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Planning & Scheduling with Time & Resources

Outline

§ Motivations

§ Representations of time, resources and actions

§ Time management

§ Resource management

§ Planning & scheduling

§ Conclusion
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Presentation coverage

l HTN techniques:

§ clearly relevant, but not covered here

=>  Dana Nau's talk

l Formal techniques:

§ briefly mentioned

=> Paolo Traverso's talk

l Mathematical programming techniques: widely used in

resource allocation and scheduling, more and more

investigated in planning

l CSP-based techniques: the main focus of this talk

No Blocks world here!

Planning with Time & Resouces 4

Motivations

Planning for autonomous robots
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Planning object manipulation tasks
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Distributed Planning for multi-robots cooperation
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attribute position(?robot) {
       ?robot in {h2, h2_bis, junior};
       ?value in {zone1, zone2, zone3};}

event(position(junior) : (zone3, zone2), t);

hold(position(jumior) : zone2, (start, end));

source puissance_electrique() {
       ?capacity = 100;}
use(ordinateur(sirius) : 1, (t1, t2));
produce(puissance() : 100, end);
consume(combustible() : 50, end);

task init()(start, end)

{
  timepoint t1,tbut;

  //- initial situation

  explained event(position(junior): (?, zone1), start);
  explained event(position(h2): (?, zone6), start);

  explained event(position(container12): (?, zone2),start);

  explained event(position(container4): (?, zone3),start);

  use(robot(junior(): 1, (start, t1));
  (t1 - start) = 10:00;

  //- goals

  hold(position(container12): zone6, (tbut, end));
  hold(position(container4): zone1, (tbut, end));

  tbut <= end;
  (end - start) in [01:00:00, 04:00:00];

}

task go_to(?r, ?zone1, ?zone2)(start, end)

{
  event(position(?r): (?zone1, MOUVEMENT), start);

  hold (position(?r): MOUVEMENT, (start, end));
  event(position(?r): (MOUVEMENT, ?zone2), end);

  use(robot(?r):1, (start, end));
  use(puissance(): 40, (start, end));

  use(communication(): 10, (start, end));
  use(zone_deplacement(): 1, (start, end));

  (end - start) in [00:02:00, 00:04:00];
}

Task planning requirements
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PROBA, an autonomous observation satellite
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•Remote Agent Experiment - May 17-21, 1999

http://rax.arc.nasa.gov

•We were able to fly a spacecraft without
straying too much from a “neat” temporal,
constraint-based, purely generative planning
framework

• We were able to do so using fairly crude search
control mechanisms

Courtesy N.Muscettola, NASA, Ames
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Motivation for time in planning

l Time is needed in planning:

§ Planning is the synthesis of a trajectory, a future course of

actions with predicted outcome

§ It is developed inherently with respect to time

§ There are no planning domains without time

§ They are just domains where the restrictive assumptions of

classical planning may be acceptable:

ú Actions as instantaneous transitions between states

ú No external dynamics

ú Goals or utilities as desirable states

Planning with Time & Resouces 14

Application domains mentioned so far in this school

l Scheduling problems

l Autonomous agents

l Software module integrators

l Interactive decision support

l Plan-based interfaces

l Integrated product and process design

l Evacuation operations
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 (:action A

:parameters (?w ?x ?y ?z)

:precondition (and (P ?w ?x) (Q ?x ?y)

(R ?y ?z))
:effect (and (Q ?x ?z) (not (Q ?z ?y))))

(:action B

:parameters (?x ?y)

:precondition (and (Q ?x ?y) (S ?x ?y))

:effect (and (T ?x)))

(:action C

:parameters (?x ?y)

:precondition (and (U ?x) (V ?y))

:effect (and (P ?x ?y) (not (U ?x))))

(:action D

:parameters (?x ?y)

:precondition (and (P ?x ?y) (T ?x))

:effect (and (U ?x) (not (P ?x ?y))))

(:objects a b c d e f g  h i j k l m n o)

(:init  (Q e k) (Q f k) (Q g k) (Q h k)
(Q i k) (Q j k) (R k l) (R l m)
(R m n) (R n o) (S e o) (S f l)
(S g o) (S h l)  (S i n) (S j o) (U a)
(U b) (U c) (U d) (V e) (V f) (V g)
(V h) (V i) (V j))

(:goal (and (T e) (T f) (T g)  (T h) (T i)
(T j))))

1 2 3 4 5

Email

Browsing

Planning

WP

Latexing

Printing

Courtesy Derek Long
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Graphical programming interface
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Motivation for time in planning

l Time is needed in planning:

§ Planning is the synthesis of a trajectory, a future course of

actions with predicted outcome

§ It is developed inherently with respect to time

§ There are no planning domain without time

§ They are just domains where the restrictive assumptions of

classical planning may be acceptable:

ú Actions as instantaneous transitions between states

ú No external dynamics

ú Goals or utilities as desirable states
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Time in planning

l Classical planning assumptions not acceptable when dealing
with

§ Concurrent actions

§ Actions with duration

§ Actions that preserve a value, e.g., servoing

§ Goals situated in time with maintenance conditions

§ Dynamic domain with external events
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Time for planning

l Time is convenient for planning

§ Time is a peculiar resource :

ú Flows independently of action

ú Is equally available for all actors or processes
(parallelism)

ú Time is mathematically structured:
transitive asymmetric relation

ú It is non reversible

ú It orders causality : causes precede effects

§ Requires a representation specific to time, but domain
independent, which allows a general temporal reasoning
scheme
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Resources

l Resources are needed in planning

§ Actions require resources

§ Actions affect resources in a relative way,
as opposed to absolute change in state propositions
e.g. painting a wall with a brush

effect : #dry brushes reduced by 1
wall painted

§ Expressing sharable resources as propositions introduces
unnecessary combinatorics
e.g. naming all equivalent tools

§ Consumable resources require specific handling
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Scheduling vs. planning

Classical decomposition:

Objectives
Partial

order of
tasks

Planning

What to do

KR
Condition/effect

operators

PlanScheduling

When & How to do it

Time and
resources

Emphasis Feasibility Optimization
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Decomposition Planning - Scheduling:

l Not  convenient when interaction planning / scheduling

l No crisp border-line between planning and scheduling

§ When desired tasks are known, it may not be feasible to
specify them at a detailed level
Tasks may appear as goals that need to be planned for
=> Hierarchy of levels from missions to primitive actions

§ Interactive planning: requires a good management of this
hierarchy, main decisions and choices left to user, detailed
planning, assessment and evaluation automated

§ Controlling autonomous systems:
an integrated problem, no clear benefit in decomposing it

Scheduling vs. planning
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Planning & Scheduling with Time & Resources

Outline

§ Motivations

§ Representations of time, resources and actions

§ Time management

§ Resource management

§ Planning & scheduling

§ Conclusion
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Representations of time, resources and actions

l A problem well represented is half solve

l Main representations for planning

§ Time : time-nets, algebraic and geometric representations

§ Resources : ontology, algebraic representations

§ Actions: formal and operator based representations
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Representing time: an example

A robotized manufacturing cell has subsystems for
Feeding  parts (F )
Assembly (A )
Inspection (I ) and
Unloading (U )
§ parts feeding is done before or during  inspection or

assembly
§ unloading is done after  assembly
§ inspection cannot proceed while  assembly or unloading

are performed

How can it be organized ?

Planning with Time & Resouces 26

Example

At lunch break I would like
to feed myself (F )
to meet Aphrodite (A )
to read Irene's letter (I ) and
to phone to Ursula (U )

§ I can have lunch before or during my meeting with
Aphrodite, or while reading Irene's letter

§ I want to phone to Ursula after  meeting Aphrodite

§ I cannot read Irene's letter while meeting Aphrodite or
while talking on the phone with Ursula

How should I plan my lunch break ?
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A U

I

F

before

disjoint

disjoint

before or
during 

before or
during 

• Activities spanning over temporal intervals

• Disjunction of symbolic relations constraining these intervals

• Network of binary constraints

Planning with Time & Resouces 28

Example
Jean goes to work by car (30 to 40') or

by bus (at least 60')

Paul takes  his bike (40 to 50') or
his motor-bike (20 to 30')

Today :
ú Jean has to leave home between 7:10 and 7:20
ú Paul should arrive at work between 8:00 and 8:10

ú Jean has to arrive 10 to 20' after Paul leaves home

§ Is there a coordinated plan for them ?

§ When Paul has to leave home ?

§ Can he use his bike ?

§ What if Jean's car is broken ?

§ Can Jean and Paul meet on their way ?
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- time-points representing events
- approximate numerical duration for activities

[20 ≤ bike commuting ≤ 30] ;        [60 ≤ bus commuting] 
- precedence constraints between events: [e2 after e3] by [10  to  20]
- temporal localization within absolute reference frame 
- disjunction of constraints between events

t0

e1

e2

e3

e4

[30, 40] or [60, + ∞ ]

[20, 30] or [40, 50]

[10, 20]

[10, 20]

[60, 70]
7:00

Jean

Paul

Planning with Time & Resouces 30

Temporal networks

l Nodes as time-tokens: either points or intervals

l Arc as disjunction of primitive relations on points or intervals

§ Set B of primitive relations

§ Constraints between 2 tokens: a subset of B

r ∈   2B

l Operations and structure over 2B
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Temporal relations

l Points : B = {< , = , > }

"<"  : transitive and asymmetric relation

l Intervals : B = {b, m, o, s, f, d, e, b', m', o', s', f', d'}

b m o

s d ef

Planning with Time & Resouces 32

Temporal relations

l 2B    set of compound relations :

t1  different from   t2 ≡  (t1 < t2) ∨  (t1 > t2)

u  disjoint from  v ≡ b(u, v) ∨  b'(u, v)

u  while  v ≡  s(u,v) ∨  d(u,v) ∨  f(u,v)

disjoint ≡ {b, b'}

while ≡ {s, d, f}

intersect ≡ {o, s, d, f, e, f', d', s', o'}

synchronize ≡ {m, m'}
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Constraint network

t1 t2

t3 t4

t5 t6

<
<

<

<

<

=

i1
i2

i3

t1 t2
t3 t4

t5 t6 i3

{b}

{m}{o, b, m}

i1 i2
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Calculus over 2B

- inverse of r  r' =  B - r

- inclusion  r ⊆  q
- union r ∪ q
- intersection  r ∩ q
- composition  r ° q

if r(u, v) and q(v, w) then r ° q (u, w)

(2B, ∩ , ° ) is a  semi-ring

(2B, ∪ , ° ) is an algebra

Interval algebra

Point algebra

r ° q (u, w)

v

q(v, w)r(u, v)

u W
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Composition of temporal relations

l Time-points

§ {<} ° {<} = {<}

l Intervals

§ {m} °  {f}  =  {o, s, d}

§ {m, o'}° {s, f} =  (m° s) ∨  (m° f) ∨  (o'° s) ∨  (o'° f)

= {m} ∨  {o, d, s} ∨  {o', d, f} ∨  {o'}

= {m, o, d, s, o', f}

Planning with Time & Resouces 36

Inferred relations

if  p(u,w), q(v,w) and  r(u,v)

then [p ∩ (r ° q)] (u, v)

[p ∩ (r ° q)](u, w)

v
q(v, w)r(u, v)

u W
p(u, w)

r ° q (u, w)
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A U

I

F

{b}

{b, b'}

{b, b'}

{b, m, o, d} 

{b, m, o, d} 

A U

I

F

before

disjoint

disjoint

before or
during 

before or
during 

F—>A—>U : {b, m, o, d} {b} = {b}

{b}
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Networks of numerical constraints

l Simple temporal network (STP) : w/o disjunction
elementary relation r(t , t') :     λ ≤  t' - t  ≤  µ
bounds on time distance

ú r = [λ ; µ] with λ ≤ µ
ú r' = [- µ ; - λ]

ú r ° q = [ Σ λ i ; Σ µ i]

ú r ∩ q = [max{λ i}; min{µ i}]

l Complex networks with disjunction (TCSP)
ú (p ∨ q) °  r = (p ∨ r) °  (q ∨ r)
ú (p ∨ q) ∩ r = (p ∨ r) ∩ (q ∨ r)

But for R= r1 ∨ … ∨ ri ; P= p1 ∨ … ∨ pj ; Q= q1 ∨ … ∨ qk

ú (P ∩ Q) °  R ≠  (P ∩ R) °  (Q ∩ R)
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t0, e1, e2 :  [40, 60]
t0, e4, e3 :  [10, 30]
e1, t0, e3 :  [-10, 20]
e1, t0, e4 :  [40, 60]
e2, e1, e4 :  [0, 30]

t0

e1

e2

e3

e4

[30, 40]

[40, 50]

[10, 20]

[10, 20]

[60, 70][-10,  20]

[40, 60]

[10, 30]

[40, 60]

[0,  30][20, 30]

[40, 50]

[20, 30]

[10, 20]

[50, 60]

e2, e3, e4 : [40-20, 50-10]∧[0, 30]= [20, 30]
t0, e4, e2 : [60-30, 70-20]∧[40, 60]= [40, 50]
t0, e2, e3 : [40-20, 50-10]∧[10, 30]= [20, 30]
e1, e2, e3 : [30-20, 40-10]∧[-10, 20]= [10, 20]
e1, e2, e4 : [30+20, 40+30]∧[40, 60] = [50, 60]
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e1, t0, e4 :  [40, 60] 
e2, e3, e4 :  [20, 40]
e1, e4, e2 : [40-40, 60-20]∧[60, + ∞ ]= [60, 40]

[40, 60]

[20,  40]
t0

e1

e2

e3

e4

[60, + ∞ ]

[40, 50]

[10, 20]

[10, 20]

[60, 70]

[60, 40]

Contradicts λ ≤ µ => inconsistent network
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Other representations of time

Interval i --> start-point,  end-point, duration, latency w.r.t. other
intervals j, k, ...

{si, fi, di, wij, wik, ...}

Uncertainty windows : [lower bound, upper bound]

{ [ si, Si], [ fi, Fi], [ di, Di], [ wij, Wij], ... }

Constraints: fi = si + di

sj = fi + wij

with si ≤ si ≤  Si

fi  ≤ fi ≤Fi

di  ≤ di ≤Di

wij ≤ wij ≤ Wij

Planning with Time & Resouces 42

Interval (si, fi) : a point in 2D space (start-point, end-point)

Partition of the plan with respect to interval i

if uncertainty windows:  2D domains ([ si, Si], [ fi, Fi])

Start-points

End-points

i

j

i

j
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Representation of resources

Discrete Continuous

      

Reusable     tools   power

Consumable   bolts   energy

§ Discrete reusable resources of unit capacity (non sharable):
as usual propositions or fluents

§ Other type of resources:
as functions of time + capacity constraints

—> resource profile

Restrictive assumptions: discrete functions,
stepwise linear functions, etc

Planning with Time & Resouces 44

Resources

l Allocating a resource to an activity

§ Borrowing a resource
use(rce:q , (t , t'))

§ Consuming a resource
consume(rce:q, t)  —> use(rce: q, (t , +  ) )

§ Producing a resource
produce (rce:q, t) —> use(rce:q, (-  , t))    and

capacity(rce)+= q



23

Planning with Time & Resouces 45

Action representations

l Formal representations

§ Modal logic

§ Linear logic

§ Adaptations of classical logic

ú Situation calculus

ú Event calculus

ú Reified logic

l Operator-based representations

l HTN representations

l Functional representations

Planning with Time & Resouces 46

Formal representations

Temporal logic : Time as a modality

Temporal operators : F (future) et P (past) :

Fϕ : will be true at least once ϕ ;

Pϕ : has been true at least once ϕ

Operators defined from  F and P:

Gϕ  ≡ ¬F¬ϕ   :  ϕ will always be true

Hϕ  ≡ ¬P¬ϕ   :  ϕ has always been true

Distance information  F(n)ϕ : ϕ will be true in n units of time

      P(n)ϕ : ϕ has been true  n units ago

Relative localization :  S(a, ϕ) : ϕ  has been true since a

       U(a, ϕ) : ϕ will become true until a
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Event calculus

l Idea : focus on local events

act(e1, exit).
actor(e1, jean).
source(e1, home).
time(e1, 7.30).

l Express in Horn clauses

§ Domain axioms concerning described relations and events

initiates(E, into(X, Y)):- act(E, enter), actor(E, X),
destination(E, Y).

terminates(E, into(X,Y)) :- act(E, exit), actor(E, X),
source(E, Y).

§ General axioms relative to time

l Use logic and constraint programming
with an abduction based approach to planning
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Event calculus

l Temporal terms:

Intervals or periods after(event, relation)  |------>

before(event, relation) <------|

Instants : init(before(event, relation)) x------|

end(after(event, relation)) |------x

time(event, t)
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l General axioms:

start(after(e, p), e). e------>

start(before(e1, p), init(before(e1, p)).

start(before(e1, p), e2) :-   equal(after(e2, p), before(e1, p)).

equal(after(e2, p), before(e1, p)) :-

hold(after(e2, p)), hold(before(e1, p)),

precede(e2, e1), not(broken(e2, p, e1).

broken(e2, p, e1) :- hold(before(e, q)), exclusive(p, q),

precede(e2, e), precede(e, e1).

broken(e2, p, e1) :- hold(after(e, q)), exclusive(p, q),

precede(e2, e), precede(e, e1).

Event calculus

e2------->
        <--------- e1

Planning with Time & Resouces 50

Event calculus

stop(before(e, p), e).

stop(after(e1, p), e2) :- equal(after(e1, p), before(e2, p))

precede(e1, e2) :-   time(e1, t1), time(e2, t2), t1 < t2 .

hold(before(e, p)) :- terminates(e, p).

hold(after(e, p)) :- initiates(e, p).

holdAt(p ,t) :- hold(after(e, p)), in(t, after(e, p)).

holdAt(p ,t) :- hold(before(e, p)), in(t, before(e, p)).

in(t, p) :- start(p, e1), stop(p, e2),

time(e1, t1), time(e2, t2), t1 < t, t < t2
e1         p          e2
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Reified logic

l Reify : to name a formula into an object that can be
transformed and explicitly manipulated

l Domain relations: as terms, temporally qualified

Hold(on(a, b), intvl7)

x y, t1, t2, t3 t4  :

[(t3  t1) (t2  t4) 

Hold (position(robot, x); t1) 

type(?route, trajectory(x, y)) 

Hold(feasible(?route); (t3 . t4)) 

Hold traverses(robot, ?route); (t1 .  t2)) 

  ⇒  Hold(position(robot), y); t2)
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Reified logic

l Planning operator
 i, a, b, e  putton (a, b, e, i) =>

  j, k, l, m, n clear(a, j)  holding(a, k)

clear(a, l)  clear(b, m)  on(a, b, n)

o(j, i)  f(k, i)  m(j, k)  m(i, l)  {f, f'}(i, m)  m(i, n)

i

j k l

m n
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Reified logic

l Domain constraints:
clear(b, t1)  on(a, b, t2) => disjoint(t1, t2)

clear(a, i)  holding(a, j) => disjoint(i, j)

l Given a domain model W and a goal G, a plan is a set of
assumptions A1, …, An such that

W |= A1  …  An => G  and

       A1  …  An    consistent

l Limited capability for reasoning about the future: cannot
predict external events or plan to change them, but can
construct plans that take them into account
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Operator-based representations

l Extension of Strips operators with temporal information: partial
order planning does not require instantaneous state transitions

(stack action
((holding x)(clear y) —> ((clear x)(on x y))
(duration (funct  x y)))

State change at the end of the action
(if not :decomposition into several actions with specific
constructs:  initiate and consecutive)

(goals ((window after 15) (duration 20) (on a b) (on b c))

(alarm event (context (alarm set t)) nil —> ((alarm sounding))
(window at t))
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Operator-based representations

(define (operator fly)

:parameters (m l)

:resources ((plane m))

:at-time (s e)

:pre (:and (:neq m l) (at s plane m)

    (:forall (time t "[s,  e]") (> (fuel t plane) 0)))

:effect (:and (= (- e s)(/ (dist m l) 650))

            (:influence s e (fuel plane) (- (/ 650 (mpg plane))))

            (:forall o (:when (:forall (time t "[s , e]")(in t o)))

       (:and (at e o l)

 (:forall (time t "[s , e]")(:not (at t o m))))))

Planning with Time & Resouces 56

Functional representations

l Desirable features for a representation

§ Dynamics as concurrent histories of state variables or
fluents over time (timelines)

§ Elementary actions as change or persistence of state
variables

§ No formal distinction between actions or assertions
holding over a period of time

§ Planning operators as purposeful set of concurrent
elementary actions
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Thrust
Goals

Attitude Turn(a,b)Point(a) Point(b) Turn(b,a)

Engine Thrust (b, 200) OffOff

Delta_V(direction=b, magnitude=200)

Power

Warm Up

Parallel Timelines

Courtesy N.Muscettola, NASA, Ames
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TakeImage (?target, ?instrument)
contained-by Status(?instrument, Calibrated)
contained-by Pointing(?target)
meets Image(?target)



30

Planning with Time & Resouces 59

Turn (?target) met-by Pointing(?direction)
meets Pointing(?target)

Calibrate (?instrument)
met-by Status(?instrument, On)
contained-by CalibrationTarget(?target)
contained-by Pointing(?target)
meets Status(?instrument, Calibrated)
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Chronicle Representation

l Time : linearly ordered discrete set of instants

l Multi-valued domain attributes

§ Rigid attributes: 
connected(room1, room2);   situated(printer1, room3)

§ Flexible attributes: fluents and resources

ú Contingent fluents
day-light; delivery(material)

ú  Controllable fluents, ranging over discrete values, set by actions
location(?robot)  SITES

ú Resources: constant, real values, relatively changed by actions
bricks(?storage)  [0, 100]
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Chronicle Representation

l Predicates: temporally qualified expressions
§ Events : instantaneous change of the value of a fluent

event(f(x): (a, b),  t)

§ Assertions : persistence of the value of a fluent over an interval
hold (f(x): a,   (t1, t2))

§ Resource predicates
use (r(x): q,  (t, t'))
consume(r(x): q,  (t, t'))
produce(r(x):q, (t, t'))

l Constraints
§ Temporal constraints

t < t'  ;   t - t'  [dmin, dmax]

§ Atemporal constraints
 x = y  ;  x  y  ;  x  D  ;  (x  D)  (y  D')
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Planning operators

l Conjunction of
§ Predicates : assertions (hold), events and resource predicates

§ Subtasks

§ Temporal and atemporal constraints

§ Conditional expressions

task Incubate (?elt, ?d) {

hold(position(?elt): incubator, (start, end))

event(state(?elt):(?s, incubated), end)

hold(temp(incubat): ?d, (start, end))

use(power: 10, (start, end))
(end-start) in [9., 10.]

}

start end

-10

incubator

incubated

?d
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A planning operator

task Transport-material (?mat, ?q, ?strg1, ?strg2, ?rbt) {
timepoint t1, t2
task Load (?mat, ?q, ?strg1) (start, t1));
task Unload(?mat, ?q, ?strg2) (t2, end));
hold (state(?robot) : loaded, (t1, t2));
?strg1  ?strg2 ; ?rbt in ROBOTS
?t1 < ?t2  ; end - start in [1., 2.];

}

start end

- k

t2t1

Load
Unload

state(?rbt)

position(?rbt)

material(?mat, ?strg1)

material(?mat, ?strg2)

loaded

?strg1
?strg2

+ k
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Problem description

l Domain description

Rigid attributes, fluents, resources, constants and domain constraints

l Problem description: input chronicle

§ Explained   expressions on fluents and resources

ú Initial facts

ú Expected evolution

events and assertions on contingent and controllable fluents

ú Resource availability profiles

§ Unexplained   expressions on fluents (goals)

§ Temporal and atemporal constraints
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Features of the representation

l No explicit distinction between preconditions and effects

event(f(x): (a, b),  t)   may express both:

Precond

Effect

l No explicit distinction between activity and assertion

l Handles contingent events

l Flexible wrt time and atemporal variables, including resources

n Deterministic representation

n Assumes a complete description

a

bflt(x)

t
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Planning & Scheduling with Time & Resources

Outline

§ Motivations

§ Representations of time, resources and actions

§ Time management

§ Resource management

§ Planning & scheduling

§ Conclusion
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Time Map Manager

Tasks of a TMM: managing time-tokens of a temporal data-base

Tokens(f)= {i1, ..., ik} : temporal qualifications of fluent f

Constraints between time-tokens

l Elementary queries and updating

§ Positioning two 2 tokens

§ Updating : adding/removing tokens or constraints
while maintaining the consistency of the constraint
network
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TMM
l Complex queries: temporal properties, e.g.

Simultaneity of two properties:

hold(p:a; t, t’)  hold(q:b; t, t’)

Precedence between two events :

event(p:a, b,  t) event(q:c, d; t')  t' < t)

Complex queries :

hold (position(robot): a; t, t1) 
type(?route, trajectory(a, b)) 
duration(?route, )
hold(state(?route): feasible; t3 , t4) 
(t3  t1) (t4 - t1)  

Basic elementary task of a TMM: managing temporal constraints
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Managing temporal constraints: CSP

Example :
x, y, z  ∈  {a, b, c}

Resolution
0 1 1 0 1 0 0 0 1

Μ12= 0 1 1 M13 = 0 0 1     Μ23 = 0 1 0

0 0 0 1 0 0  0 1 1

Mij ←  Mij ∧ [Mik • Mkj]  with     Mji = Mij
T

x y

z

{(a,b); (a,c); (b,b); b,c)}

{(a,c); (b,b); (c,b); (c,c)}{(a,b); (b,c); (c,a)}
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CSPPath consistency algorithm

Repeat until all Mij stabilize

     Repeat for 1 ≤ i, j, k ≤ n

Mij ←  Mij ∧ [Mik • Mkj]

end

 0 1 1  0 1 0  0 0 0
Μ12=  0 0 1 M13 =  0 0 1     Μ23 =  0 1 0

 0 0 0  0 0 0   0 1 1

hence  : x ={a, b}, y =z ={b, c}

§ Algorithm terminates (for discrete domains) with a path-consistent net

§ If distributivity property ( • distributes over ∧) then algorithm complete:
any path-consistent net is consistent
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Path consistency for temporal nets

Results and algorithms extended to temporal constraint
networks:

Algorithm PC1

for    1 ≤ i, j, k ≤ n   ,  i, j, k distinct
 rij ←  rij ∧ [rik ° rkj]

end
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Incremental path consistency

PC2 
    until Update  is empty do

Remove an element rij from Update
For 1 ≤ k ≤ n , k ≠ i, j

Update  ←  Update  ∪  Modify(i, k, rij ° rjk)
Update  ←  Update  ∪  Modify(j, k, rji ° rik)

    end

Modify (i, j, r)
r  ←  r ∧ rij

if r = Ø then Exit (Inconsistent)
if r ≠ rij  then do  rij  ←  r    

    return(rij)
 else return(nil)
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Properties of Path consistency

l PC keeps a complete graph

§ Positioning two tokens : trivial task

§ Updating:

ú Adding :  incremental propagation

ú Removal : re-compute everything from input constraints

§ Complexity : time in O(n3), space in O(n2)

§ Completeness:

ú PC not complete for interval algebra —> tractable subsets

ú PC complete for point algebra and for STP

Can it be improved ?
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Time lattice approach

Representation :

§ At the user level: point and restricted interval algebra

§ At the system level:point algebra

Network organization : a compromise between

§ maintaining a complete graph
§ maintaining only input constraints

Primitives used :  (u  v) and (u v)

Consistent network :
no closed loop through 2 nodes u ≠ v
collapsing closed loops of equal tokens : acyclic graph

adding a root => rooted acyclic graph or time lattice
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l Consistency checking: maintaining an acyclic graph

l Positioning 2 tokens : path search in network

u is before v  :  iff ∃ path from u to v

(1 ; 12)

(2 ; 1) (3 ; 9) (11 ; 11)

(4 ; 5) (8 ; 8) (12 ; 10)

(5 ; 2) (6 ; 4) (9 ; 6) (10 ; 7)

(7 ; 3)

Ancestral information in indexed tree: in O(1)
 e.g. if pre (x) < pre (y) and post(x) > post(y)

then y descendant of x

Problems: - how to map a lattice into a tree ?

- how to manage a dynamic indexing ?
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Time lattice

t0

b1 d2

g3 f4 x5

y6

z7
c1

q3 v4

u5

w6

Spanning tree

t0 b1 d2 g3 f4 x5 y6 z7

c0.1 w4.2u4.1

q2.1 v2.2
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If  I(u)=(i1 i2 ... ik)  and I(v)=(j1 j2 ... jh) then :

v ∈   s*(u)  iff   k ≤ h ,  (i1 i2 ... ik-1) =  (j1 j2 .jk-1)  and ik ≤ jk    (i)

Positioning   u and v  in  spanning tree

§ if rank(u) = rank(v) then u and v are not related in Tree;

§ if rank(u) < rank(v) :

ú either condition (i) holds : v  is a descendant of u

ú or u and v are not related in Tree;

§ if rank(u) > rank(v) : switch u and v then check condition (i)
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Spanning tree + residual arcs

Time lattice

t0

b1 d2

g3 f4 x5

y6

z7
c1

q3 v4

u5

w6

t0 b1 d2 g3 f4 x5 y6 z7

c0.1 w4.2u4.1

q2.1 v2.2
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Positioning of two points

u  before v ⇔   (rank(u) < rank(v)) ∧  [(v ∈  s*(u))
∨   (v ∈  a(u))
∨  (∃ w ∈  a(u) | w before v) ]

Compare (u, v)
if  rank(u) = rank(v)  then  return(nil)
else if r(u) > r(v)  then  Locate (v, u)

else Locate (u, v)

Locate (u, v)
if [v ∈   s*(u) or v ∈  a(u)] then return (u before v)
else for some w ∈   a(u)

if [r(w) < r(v) and   Locate(w, v) returns (w before v)]
then return (u before v)
else return nil
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Handling numerical constraints

l Managing the time lattice by path search with indexed
spanning tree

l Managing numerically constrained sub-lattice by PC
algorithm

l Constraints induced in the sub-lattice : filtered by dominance
relations,  then added back into the lattice

l Important benefit if proportion of numerical constraints is low
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t0

b1 d2

g3 f4 x5

y6

z7
c1

q3 v4

u5

w6

[10, 20]

[80, 80]

[50, 60]

[30, 40]

t q v w

c f x

[10, 80]
[0, 70]
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Planning & Scheduling with Time & Resources

Outline

§ Motivations

§ Representations of time, resources and actions

§ Time management

§ Resource management

§ Planning & scheduling

§ Conclusion
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Constraint-based approach

l Resource allocation  ui : use(rce(xi):qi, (ti, ti'))

 qi : constant, real value

l Critical set for a resource : a subset of allocations U= {ui}
§ Over-consuming :  ∑qi > Q

§ Corresponding intervals may possibly overlap

l Minimal critical set: a critical set U minimal for set inclusion

l Solving a minimal critical set

§ Allocation constraints xi ≠ xj or

§ Scheduling constraints t'i < tj  or

§ Resource production
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Resource conflicts

Perfect graphs

Weakly triangulated graphs

Intersection graphs Interval g. Triangulated g.

Minimal critical set : 
minimal over-consuming clique of intersection graph

u3

u1

40

u4

40

40

u2

40

Q=100 u1

u3

u4

u2

Intersection graph
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Solving resource conflict

l Finding minimal critical sets: an efficient backtrack search
algorithm for intersection graph, in O(nk), k: size of MCS

l Simplifying resolvers by dominance relation

{u1
+< u3

- , u1
+< u4

- , u3
+< u4

- , u4
+< u3

-, u4
+< u1

- , 
 produce(q>20)  <u4

- , produce(q>20) < u3
-, produce(q>20) < u1

-}

u3

u1

40

u4

40

40

u2

40

Q=100 u1

u3

u4

u2

Intersection graph

{u1
+< u3

- , u1
+< u4

- , u3
+< u4

- , u4
+< u3

-, u4
+< u1

- , 
 produce(q>20) < u4

- , produce(q>20) < u3
-, produce(q>20) < u1

-}
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Mathematical programming approach

l Required for more complex patterns of resource use

e.g. energy-consumption= f(speed, distance)

l Testing the consistency of set of resource allocations

§ Linear function: Gaussien elimination and Simplex

§ Non-linear functions: postpone checking till some
variables are instantiated

§ In

§ Linear programming mixed with SAT LPSAT

        mixed integer programming
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Planning & Scheduling with Time & Resources

Outline

§ Motivations

§ Representations of time, resources and actions

§ Time management

§ Resource management

§ Planning & scheduling

§ Conclusion
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Partial-order causal link planning

Least commitment regression planning
search space : <P, agenda> where P : <A, L, C>

POCL(<P , agenda>)
if C inconsistent then return failure
if agenda= Ø then return P
do

remove a goal g from G
if g not primitive then reduce g and update P
else if g is metric then post g

          else chose a provider for g, add causal link, 
and resolve constraint

end
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POCL

l Goal reduction:  - non deterministic choice for disjunction
- interval splitting

l Posting metric constraints:
         at interval end-points (piecewise linearity assumption)

l Constraints handling:

§ Codesignations: maintaining equivalence classes

§ Linear equations: Gaussien elimination

§ Linear inequalities: Simplex

§ Non-linear equations: delayed until linearized by variable
instantiation

§ Temporal constraints on time-points: Warshall transitive
closure
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Constraint-based interval planning

l A slight shift from POCL: instead of partial plans, a dynamic
CSP on a set A of temporally qualified assertions

CBI(A, C)
if C inconsistent then return failure
if all a ∈ A have causal explanation then return(A, C)
do :

select a with no causal explanation
either choose a' ∈ A such that (a',c) explains a and

return CBI(A-{a}, C ∪{c})

or choose and operator O =(A', C') that explains a and
return CBI(A-{a} ∪ A', C ∪ C')

end
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Chronicle planning

l Node of the search space: input chronicle extended with
partially instantiated operators, predicates (hold, produce, use)
and constraints
§ a set of events and assertions : expected, explained or

unexplained
§ a set of resource uses
§ a set of constraints : on temporal and atemporal variables
§ a set of planning operators
Mainly a set of timelines and constraints

l Valid plan:
§ Consistent constraints, and
§ No unexplained expression (open subgoals)
§ No conflicting expressions (threats)
§ No conflicting resource allocations

flaws
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Resolving flaws

l Resolvers for unexplained expressions
§ Disjunction of new tasks,  assertions (hold),  constraints
§ Resolvers obtained and ranked by a forward checking

procedure in an And/Or graph of tasks and subgoals
l Resolvers for conflicting expressions
§ Disjunction of temporal constraints and atemporal

constraints
§ Flaws restricted over founded expressions, resolvers

filtered out by subsumption
l Resolvers for resource conflicts
§ Disjunction of temporal constraints (scheduling),

atemporal constraints (allocation), and tasks (resource
production)
§  Resolvers obtained through minimal critical sets
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hold(samples(site3):collected, (t1, t2))

Collect-samples(site3, ?rbt)

and

hold(data(site3,earth):sent, (t'1, t'2))         hold(pos(?rbt):site3, (t'1, t'2))

    or

Get-send-data(site3, earth, ?rbt2) Goto(site3, ?rbt)

                             event(pos(robot1):(in-way, ?x), t8)                     and

     hold(pos(?rbt2):site3, (t'1, t'2))     hold(sunlight:day, (t'1, t'2))

or

event(pos(?rbt2:(?y, in-way), t'8)

event(pos(robot1): (in-way, ?x), t8)  Goto(site3, ?rbt2)

Goal decomposition and task evaluation
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Choice of a flaw 
and resolver

Operators Constraints Assertions

Subgoals Threats Resources

Initial
Chronicle

Courant partial plan Solution plan

Time-Map
Atemporal
Variables

Resolvers

Insertion resolver Constraints
managers

Flaws
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Search control

l Estimate of the commitment due to a resolver

Commit(P, ρ) =  1 - [|completion(P + ρ)|  |completion(P)|]

l Choice of the next flaw to address: the one with the fewest
competing resolvers

1/Opp(P, φ) =  ρ [1/(1+ Commit(P, ρ) - Commit(P, ρmin)]

0 1 0 1

ρ1          •    
ρ2                      •
ρ3                        •

ρ'1        •
ρ'2          •
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Domain hierarchy

Hierarchy in the search space

§ Hierarchy node : a class of fluent types and corresponding
flaws

§ Partial order of nodes with the ordered monotonicity
property obtained by preprocessing:
solving a flaw on a fluent does lead to a new flaw on a
preceding fluent

§ Dynamic hierarchy: opportunistic topological sort of the
partial order guides the search for a flawless plan
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Abstraction lattice

0

13

10

15

8
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12
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9

7

6

1
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9
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Examples

Planning with Time & Resouces 107



52

Planning with Time & Resouces 109

Planning with Time & Resouces 110

Planning & Scheduling with Time & Resources

Outline

§ Motivations

§ Representations of time, resources and actions

§ Time management

§ Resource management

§ Planning & scheduling

§ Conclusion
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Conclusion

l Time and resources: required and convenient for practical
planning

l Several potential approaches to planning and scheduling with
time and resources

§ POCL

§ HTN

§ LP with SAT

§ ILP

§ CSP

l No clear assessment yet of superior approaches-application areas

But CSP offers a - unifying framework

- several avenues of improvement
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