!'_ Refactoring

Paolo Tonella

ITC-irst, Centro per la Ricerca
Scientifica e Tecnologica

i Refactoring

Refactoring is the processs of changing a software
system in such a way that it does not alter the external
behavior of the code, while it improves its internal
structure.

Disciplined way to clean up code.

The design of the system is improved after the code
has been written.

Design occurs continuously during development.

The risks associated with the production of a good
design from the very beginning are reduced.

i Example: a video store

class Rental {

class Movie { private Movie movie;
public static final int REGULAR = 0; private int _daysRented;
public static final int NEW RELEASE = 1; !
public static final int CHILDREN = 2; EEED CEEEmEE |
private String _title; pr%vate String _name;
private int priceCode; private Vector rentals =
} new Vector() ;
}
Movie Rental Customer
1 b S

priceCode: int <«— daysRented: int «—

statement()

public String statement() {
double totalAmount = 0;
int frequentRenterPoints = 0;
Enumeration rentals = _rentals.elements();
String result = "Rental record for " + getName() + "\n";
while (rentals.hasMoreElements()) {
double thisAmount = O;
Rental each = (Rental) rentals.nextElement();

switch (each.getMovie () .getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getDaysRented() > 2)
thisAmount += (each.getDaysRented() - 2) * 1.5; break;
case Movie.NEW_RELEASE:
thisAmount += each.getDaysRented() * 3; break;
case Movie.CHILDREN:
thisAmount += 1.5;
if (each.getDaysRented() > 3)
thisAmount += (each.getDaysRented() - 3) * 1.5; break;
}
frequentRenterPoints++;
if ((each.getMovie() .getPriceCode() == Movie.NEW RELEASE) &&
each.getDaysRented() > 1) frequentRenterPoints++;
result += "\t" + each.getMovie() .getTitle() + "\t" +
String.valueOf (thisAmount) + "\n";
totalAmount += thisAmount;
}
result += "Amount owed is " + String.valueOf (totalAmount) + "\n";
result += "You earned " + String.valueOf (frequentRenterPoints) +
" frequent renter points";
return result;

Emitting statements kg—

i Method statement

= Not well designed - it has too many
responsibilities;

= Not object oriented - computation is not
delegated to objects.

Yet, it works: the compiler does not signal any error and
testing does not reveal any defect. The problem is with its
evolution: a poorly designed system is hard change. The
compiler does not care whether the code is ugly or clean,
but humans do care.

i Software evolution

= Statements should also be printable in HTML
format;

= The classification of the movies changes.

A quick-and-dirty solution could be “cloning” the statement
method into a new one, to be named HTMLStatement.

When a feature has to be added to a program, if the code is
not structured in a convenient way to add the feature, first
refactor the program to make it easy to add the feature, then
add the feature.

i Regression testing

Before starting refactoring, it is important to have a solid
test suite, with self-checking test cases. In fact, after
refactoring the program, it is convenient to perform
regression testing automatically, relying on its output to
gain some confidence that bugs have not been introduced.

= Automatic test case execution.
= Automatic verification of the outputs.

Example of tool: JUnit

* Extract method

Refactoring Extract Method: When a sequence of logically
related statements can be grouped together, they can be
turned into the body of a method, whose name should explain
the isolated behavior. Referenced variables should be made
available as parameters and/or return values, if not visible.

=

class Customer ({
public String statement() {

while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement() ;
double thisAmount = amountFor (each) ;
frequentRenterPoints++; ... }

private double amountFor (Rental each) {
double thisAmount = O0;
switch (each.getMovie() .getPriceCode()) {
case Movie.REGULAR:
thisAmount += 2;
if (each.getDaysRented() > 2)
thisAmount += (each.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW RELEASE:
thisAmount += each.getDaysRented() * 3;
break;
case Movie.CHILDREN:
thisAmount += 1.5;
if (each.getDaysRented() > 3)
thisAmount += (each.getDaysRented() - 3) * 1.5;
break;

}

return thisAmount;

Extracting method

amountktkor

i Renaming

Good code should communicate what it is doing clearly, and variable names
are a key to clear code. Anybody can write code that a computer can
understand. Good programmers write code that humans can understand.

Refactoring Renaming: If the name of an entity does not
reveal its purpose, it should be changed. All references to such
an entity must be changed accordingly. Moreover, confilicts with
existing entities must be avoided when choosing the new
name.

amountFor (Rental each) j>[amountFor (Rental aRental)

Renaming each Into aRental

private double amountFor (Rental aRental) ({
double result = 0;
switch (aRental.getMovie () .getPriceCode()) ({
case Movie.REGULAR:
result += 2;
if (aRental.getDaysRented() > 2)
result += (aRental.getDaysRented() - 2) * 1.5;
break;
case Movie.NEW RELEASE:
result += aRental.getDaysRented() * 3;
break;
case Movie.CHILDREN:
result += 1.5;
if (aRental.getDaysRented() > 3)
result += (aRental.getDaysRented() - 3) * 1.5;
break;

}

return result;

* Move method

Refactoring Move Method: 7 a method is, or will be, using or used by
more features of another class than the class in which it is defined, a new
method with a similar body can be created in the class it uses most. The
old method can either be turned into a simple delegation, or it can be
removed altogether.

=)

class Rental {

private double getCharge() { // prev: amountFor (Rental aRental)
double result = 0;
switch (getMovie () .getPriceCode()) {
case Movie.REGULAR:
result += 2;
if (getDaysRented() > 2)
result += (getDaysRented() - 2) * 1.5;
break;
case Movie.NEW RELEASE:
result += getDaysRented() * 3;
break;
case Movie.CHILDREN:
result += 1.5;
if (getDaysRented() > 3)
result += (getDaysRented() - 3) * 1.5;
break;

}
return result;
}
}

class Customer {
public String statement() ({

while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement() ;
double thisAmount = each.getCharge(); // prev: amountFor (each)

Moving amountFor
to class Rental

i Replace temporary

Temporary variables tend to encourage long methods, since the method
body is the only place where the value of the local variable can be
accessed. By replacing a temporary variable with a query method, any
method in the class can reach the related information.

Refactoring Replace Temporary Variable with Query: When a
temporary variable is used to hold the result of an expression, it is
possible to extract the expression into a query method. All references to
the temporary variable can be replaced with invocations to the query
method. Moreover, the new method can be used in other methods.

String.valueOf(thisAmount)) String.valueOf(each.getCharge())

i Replacing thisAmount

public String statement() ({

while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement() ;

frequentRenterPoints++;
if ((each.getMovie() .getPriceCode() == Movie.NEW_RELEASE) &&

each.getDaysRented() > 1) frequentRenterPoints++;

result += "\t" + each.getMovie () .getTitle() + "\t" +
String.valueOf (each.getCharge()) + "\n";

totalAmount += each.getCharge () ;

}

result +=
result +=

"Amount owed is " + String.valueOf (totalAmount) + "\n";
"You earned " + String.valueOf (frequentRenterPoints) +

" frequent renter points";
return result;

Moving the frequent-
RenterPoints computation

class Customer {

public String statement() {

double totalAmount = 0;

int frequentRenterPoints = 0;

Enumeration rentals = rentals.elements();

String result = "Rental record for " + getName() + "\n";

while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement() ;
frequentRenterPoints += each.getFrequentRenterPoints () ;

}}

}

class Rental {

public int getFrequentRenterPoints () ({
if ((getMovie() .getPriceCode() == Movie.NEW RELEASE) && getDaysRented() > 1)
return 2;
else
return 1;

Replacing totalAmount and

frequentRenterPoints

class Customer ({
public String statement() {
Enumeration rentals = _rentals.elements();
String result = "Rental record for " + getName() + "\n";
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement();
result += "\t" + each.getMovie() .getTitle() + "\t" +
String.valueOf (each.getCharge()) + "\n";
}
result += "Amount owed is " + String.valueOf (getTotalCharge()) ;
result += "You earned " +
String.valueOf (getTotalFrequentRenterPoints()) +
" frequent renter points";
return result;
}
public double getTotalCharge () {
double result = 0;
Enumeration rentals = rentals.elements();
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement() ;
result += each.getCharge() ;
} return result;
}
public int getTotalFrequentRenterPoints() {
int result = 0;
Enumeration rentals = _rentals.elements();
while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement() ;
result += each.getFrequentRenterPoints() ;
} return result;

i New class diagram

Movie . Rental . Customer
priceCode: int <«—— daysRented: int <«
getCharge() statement()
getFrequentRenter getTotalCharge()
Points()

getTotalFrequent
RenterPoints()

:L Adding HTMLStatement

class Customer {

public String HTMLStatement () ({
Enumeration rentals = _rentals.elements()
String result = "<Hl1>Rentals for " + getName () +
"</H1><P>\n" ;

while (rentals.hasMoreElements()) {
Rental each = (Rental) rentals.nextElement () ;
result += each.getMovie () .getTitle() + ": " +

String.valueOf (each.getCharge()) + "
\n";

}
result += "<P>You owe " +

String.valueOf (getTotalCharge()) + "<P>\n";

result += "You earned " +
String.valueOf (getTotalFrequentRenterPoints()) +

" frequent renter points<P>";
return result;

i Introducing polymorphism

Polymorphism allows avoiding an explicit conditional when
the behavior of an object depends on its type.

= If conditional code is present, each time a new type
is added, all conditionals sparsed in the code have to
be found and updated.

= On the contrary, if conditional code is replaced with
polymorphism, it is sufficient creating a new subclass
and providing the appropriate methods.

= Clients of a class don't need to know about the
subclasses, thus reducing the dependencies in the
system and simplifying its update.

Moving getCharge and
getFrequentRenterPolnts

class Rental {
public double getCharge() { return movie.getCharge(daysRented); }
public int getFrequentRenterPoints () {
return movie.getFrequentRenterPoints(_daysRented) ;

}
}

class Movie {
public double getCharge (int daysRented) {
double result = 0;
switch (getPriceCode()) {
case REGULAR:
result += 2;
if (daysRented > 2) result += (daysRented - 2) * 1.5; break;
case NEW RELEASE:
result += daysRented * 3; break;
case CHILDREN:
result += 1.5;
if (daysRented > 3) result += (daysRented - 3) * 1.5; break;
} return result;

}
public int getFrequentRenterPoints (int daysRented) {

if ((getPriceCode() == NEW_RELEASE) && daysRented > 1) return 2;
else return 1;

Replace type code with
state/strategy

Introducing subclasses of Movie does not work in our case, since
while a movie can change its classification over its lifetime, an object
cannot. The solution is adopting the State design pattern.

Refactoring Replace Type Code with State/Strategy: When a type
code affects the behavior of a class, but subclassing cannot be used, the
type code can be replaced with a state object,

Movie [——® Price

Movie / /\ b\
priceCode: int)

Regular NewRelease

Children

Adding class Pric

abstract class Price {
abstract int getPriceCode() ;
public double getCharge (int daysRented) {
double result = 0;
switch (getPriceCode()) {

}

case Movie.REGULAR:
result += 2;
if (daysRented > 2)

result += (daysRented - 2) * 1.5;

break;

case Movie.NEW_ RELEASE:
result += daysRented * 3;
break;

case Movie.CHILDREN:
result += 1.5;
if (daysRented > 3)

result += (daysRented - 3) * 1.5;

break;

return result;

class
int

class
int

class
int

ChildrenPrice extends Price {
getPriceCode () { return Movie.CHILDREN;

NewReleasePrice extends Price {

getPriceCode() { return Movie.NEW_RELEASE; }

RegularPrice extends Price {
getPriceCode () { return Movie.REGULAR;

}

}

Adding class Price,h‘*

class Movie {
public static final int REGULAR = 0;
public static final int NEW RELEASE = 1;
public static final int CHILDREN = 2;

private String _title;
private Price price;

public void setPrice(int priceCode) {
switch (priceCode) {
case REGULAR:
_price = new RegularPrice();
break;
case NEW_RELEASE:
_price = new NewReleasePrice() ;
break;
case CHILDREN:
_price = new ChildrenPrice();
break;

}

public double getCharge (int daysRented)
return price.getCharge (daysRented) ;
}

Replace conditional with

i polymorphism

Refactoring Replace Conditional with Polymorphism: When a
conditional statement chooses a different behavior depending on the type
of an object, each leg of the conditional can be turned into an overriding
method of a subclass associated with the object type. The original method

becomes abstract.

Price

getCharge())
/ A b\

Regular

NewRelease

Children

Pﬁce
/ A\ b\
Regular NewRelease
getCharge() getCharge()
Children

getCharge()

Replacing getCharge

abstract class Price {
abstract double getCharge (int daysRented) ;
}
class ChildrenPrice extends Price {
public double getCharge (int daysRented) {
double result = 1.5;
if (daysRented > 3)
result += (daysRented - 3) * 1.5;
return result;

}

}

class NewReleasePrice extends Price {
public double getCharge (int daysRented) {
return daysRented * 3;

}

}

class RegularPrice extends Price ({
public double getCharge (int daysRented) {
double result = 2;
if (daysRented > 2)
result += (daysRented - 2) * 1.5;
return result;

Replacing

getFrequentRenterPoints

abstract class Price {
abstract double getCharge (int daysRented) ;
public int getFrequentRenterPoints (int daysRented) ({

return 1;

}
}

class NewReleasePrice extends Price {

public int getFrequentRenterPoints (int daysRented) ({
return (daysRented > 1) ? 2 : 1;

}

}

class Movie {

public double getCharge (int daysRented) {
return price.getCharge (daysRented) ;

}

public int getFrequentRenterPoints (int daysRented) {
return price.getFrequentRenterPoints (daysRented) ;

}

Fmal class

1 Price

getFrequentRenterPoints()

AN

Regular Children

title: String

getCharge()

getCharge()

getCharge()
getFrequentRenterPoints()

A
1

Rental

NewRelease

getCharge()

getFrequentRenterPoints()

Customer

Name: String

daysRented: int

getCharge()
getFrequentRenterPoints()

statement()

HTMLStatement()
getTotalCharge()
getTotalFrequentRenterPoints()

i Conclusions

= Refactoring leads to better-distributed
responsibilities and code that is easier to
change.

= The overall organization is improved.
= The original code can be step by step
migrated.

= Changing any behaviour, adding new
functionalities, or addlng extra type-
dee(endent behawour become much easier
tasks

