
Planning with Derived Predicates through
Rule-Action Graphs and Relaxed-Plan Heuristics

Alfonso Gerevini Alessandro Saetti Ivan Serina Paolo Toninelli
Dipartimento di Elettronica per l’Automazione,

Universit̀a degli Studi di Brescia
Via Branze 38, I-25123 Brescia, Italy

{gerevini,saetti,serina }@ing.unibs.it

Abstract

The ability to express “derived predicates” in the formalization of a planning domain is both practically and
theoretically important. The recent PDDL2.2 language supports derived predicates, which can be expressed by
“domain rules”.

We propose an approach to planning with derived predicates where the search space consists of particular
graphs of actions and rules, calledrule-action graphs, representing partial plans. We present (i) some techniques
for managing domain rules in the context of a local search process for rule-action graphs, (ii) new heuristics for
guiding the search, and (iii) a new method for restricting the search neighborhood to speed up the search.

The proposed approach and techniques are implemented in a new version of the LPG planner, which took part
in the fourth International Planning Competition showing good performance in many benchmark problems.

1 Introduction

In classical domain-independent planning, derived predicates are predicates that the domain actions can only indi-
rectly affect. Their truth in a state can be inferred by particular axioms, that enrich the typical operator description
of a planning domain.

As discussed in [17, 5], derived predicates are practically useful to express in a concise and natural way some
indirect action effects, such as updates on the transitive closure of a relation. Moreover, compiling them away
by introducing artificial actions and facts in the formalization is infeasible because, in the worst case, we have
an exponential blow up of either the problem description or the plan length [17]. This suggests that is worth
investigating new planning representation and algorithms supporting derived predicates, rather than using existing
methods with “compiled” problems.

The first version of PDDL [12], the language of the International Planning Competitions, supports derived
predicates as particular “axioms”, and the recent PDDL2.2 [5] version re-introduces them as one of the two new
features for the benchmark domains of the 2004 International Planning Competition (IPC-4). Some methods for
handling derived predicates have been developed and implemented in several planning systems, such as UCPOP

[2] and the very recent planners DOWNWARD [10], SGPLAN [3] and MARVIN [4].
In this paper, we present some techniques for planning with derived predicates, which are implemented in a

new version of the LPG planner [8] called LPG-td.1 Our methods extend an approach to planning in a space of
action graphsrepresenting partial plans, which is explored by a local search process.

The main contributions of this work are:

• a method based onAND-OR-graphs for representing and managing the domain rules defining the derived
predicates in the domain formalization;

• a plan representation for domains with derived predicates based on particular graphs calledrule-action
graphs;

• some techniques exploiting particular relaxed plans for the heuristic evaluation and restriction of the search
neighborhood (both for simpleSTRIPSdomains and domains involving derived predicates);

• some experimental results from IPC-4 illustrating the effectiveness of our techniques.

1The “td” suffix is an abbreviation of “Derived predicates and Timed initial literals”, the two new features of PDDL2.2 with respect to
PDDL2.1 [6].

1

if on(x, y) ∨ ∃ z
(
on(x, z) ∧ above(z, y)

)
then above(x, y)

A

B

C

D

s = { ontable(A) , ontable(D) , on(C,D) , on(B,C) , above(B,C) , above(C,D) , above(B,D) }

Figure 1: Example of domain rule deriving a predicate in the blocks world, and of a states whereabove(B,C) ,
above(C,D) andabove(B,D) are ground derived predicates.

The rest of the paper is organized as follows. The second section introduces our representation of derived
predicates; the third section presents rule-action graphs; the fourth section gives some new search techniques; the
fifth section describes some experimental results from IPC-4; finally, the last section gives the conclusions.

2 Representing Derived Predicates: the Rule Graph

In PDDL2.2, derived predicates are particular predicates that do not appear in the (positive or negative) effects of
any domain action. The truth value of a derived predicate is determined by a set ofdomain rulesof the form

if Φx thenP (x),

whereP (x) is the derived predicate,x is a tuple of variables, the free variables inΦx are exactly the variables in
x, andΦx is a first-order formula such that the negated normal form (NNF) ofΦx does not contain any derived
predicate in negated form.2 The last syntactic restriction has the semantical motivation of ensuring that there is
never a negative interaction between the application of rules in a world state (for more details see [5]).

Figure 1 shows a typical example of derived predicate (above) in the blocks world. A blockx is above y, if
x is on y, or it is on a third blockz, which isabove y. Above is the transitive closure of theon relation.

In the rest of the paper, we call a ground predicate appearing in the initial state, problem goals, or in the
preconditions or effects of a domain action abasic fact; we call a ground derived predicate obtained by substituting
each variable in the derived predicate of a rule with a constant aderived fact.

A grounded ruleis a rule where every predicate argument is a constant. Given a ruler = (if Φx thenP (x))
and a tuple of constantsc (|x| = |c|), we can derive an equivalentsetof grounded rulesΓ by substituting inr the
c-constants for the correspondingx-variables, and applying the following transformations to the resulting rule:

• Φc is transformed into negated normal form;

• Each literal with an existentially quantified variable is replaced by a disjunction of literals where the variable
is substituted by a constant of the planning problem (one disjunct for each constant);

• Each literal with an universally quantified variable is replaced by a conjunction of literals obtained by sub-
stituting the variable with every constant of the planning problem (one conjunct for each constant);

• Φc is transformed into disjunctive normal form:Φc = φ1∨ ...∨φk, whereφi is a ground literal (1 ≤ i ≤ k);

• For eachφi in Φc, the grounded ruleif φi thenP (c) is added toΓ.

Given a planning problem and a setR of rules defining the derived predicates of the domain, we can then derive
an equivalent setR of grounded rules. We call the left hand side (LHS) of each rule inR the triggering condition
of the rule, and the conjoined facts forming the LHS of the rule thetriggering factsof the rule.

We represent the domain grounded rulesR through aRule Graph, which is defined as follows.

Definition 1 The rule graph of a planning problemΠ with derived predicates defined by a set of rulesR is a
directedAND-OR-graph such that:

2In a NNF formula, negation occurs only in literals.

2

Grounded Rules
r1: if on(A,D) ∧ above(D,C)

thenabove(A,C)
r2: if on(A,C)

thenabove(A,C)
r3: if on(A,B) ∧ above(B,C)

thenabove(A,C)
r4 : if on(D,A) ∧ above(A,C)

thenabove(D,C)
r5 : if on(D,C)

thenabove(D,C)
r6: if on(D,B) ∧ above(B,C)

thenabove(D,C)
r7: if on(B,D) ∧ above(D,C)

thenabove(B,C)
r8 : if on(B,C)

thenabove(B,C)
r9: if on(B,A) ∧ above(A,C)

thenabove(B,C)
on(B,A)on(D,A)

on(A,C)on(A,D) above (D,C) above (B,C)

on(B,D) on(B,C)

r1 r2 r3

r4 r5
r6 r9r8

r7

above (A,C)

on(A,B)

on(D,B)on(D,C)

Figure 2: A portion of the rule graph for a blocks world domain with the domain rule and objects of Figure 1.
Circle nodes representOR-nodes; square nodes representAND-nodes. Multiple edges joined by an arc connect
a domain rule to a set ofAND-nodes representing the triggering condition of the rule. For instance, the nodes
labeledon(A,D) andabove(D,C) areAND-nodes representing the triggering condition of ruler1. above(D,C)

is a derived fact that can be obtained by applying three rules (r4, r5 andr6) represented by threeOR-nodes with
incoming edges from theAND-node labeledabove(D,C) .

• AND-nodes are either (i) leaf nodes labeled by basic facts ofΠ, or (ii) nodes labeled by derived facts ofΠ;
OR-nodes are labeled by grounded rules inR and are not leaf nodes.

• Each AND-nodep is connected to a set ofOR-nodes representing the grounded rules derivingp. Each
OR-node labeledr is connected to a set ofAND-nodes representing the triggering condition ofr.

Figure 2 gives an example of rule graph. Notice that, in general, eachOR-node in a rule graph has a single
incoming edge, because of the syntax of the rules defining derived predicates.

Given a states, and a set of domain rulesR, we denote withD(s,R) the set of the derived facts obtained by
applying the rules inR to s with an arbitrary order until no new fact can be derived. In other words,D(s,R) is
the least-fixed point over all possible applications of the rules to the state where the derived facts are assumed to
be false (because under the closed world assumption, they do not belong tos). An algorithm for derivingD(s,R)
is given in [5].

In the rest of the paper, we abbreviates∪D(s,R) |= ψ with s |=R ψ, where|= is the logical entailment under
the closed world assumption ons, andψ is a (basic or derived) fact.

3 A Plan-based Search Space

Like in partial-order causal-link planning, e.g., [14, 11, 13], in our approach we search in a space of partial plans,
where each search state is a particular graph representing a plan under construction. In this section, we present
our plan representation for domains with derived predicates, and the basic search steps (graph modifications) for
exploring the search space.

3.1 Search State: Rule-Action Graph

We represent a (partial) plan in a domain with derived predicates through an extension of the linear action graph
representation [7, 8], which we callRule-augmented Action Graphor, shortly,Rule-Action Graph.

A linear action graphA for a planning problemΠ is a directed acyclic leveled graph alternating afact level
and anaction level. Fact levels contain basicfact nodes, each of which is labeled by a ground predicate ofΠ. Each
action level contains one action node labeled by the name of a domain action that it represents, andno-op nodes
defined as in [1]. An action node labeleda at a levell is connected by (i) incoming edges from the fact nodes
at levell representing the preconditions ofa (precondition nodes), and (ii) by outgoing edges to the fact nodes at
level l + 1 representing the effects ofa (effect nodes).

The initial level contains the special action nodeastart, and the last level the special action nodeaend. The
effect nodes ofastart represent the positive facts of the initial state ofΠ, and the precondition nodes ofaend the
goals ofΠ.

3

m
.e.

m
.e.

m
.e.

Goal level

r3

p3

a1

r1

d1

p4

p5

d2

a2

p3

p4 p4 p4 p4

p7

p1

d1

r1

p3

p1

p2

p3

p1p1 p1

a3

p6p6

p4

p8

astart

p4 p4

r2

d3

d4

aend

Level1 Level2 Level3

ACTIVATED RULES:
r1: if p3 thend1, r2: if p6 thend3, r3: if d3 ∧ p4 thend4

Figure 3: A simple example of rule-augmented action graph. Square nodes are action nodes. Diamond nodes are
rule nodes; circle nodes are (basic or derived) fact nodes. The square nodes marked by the factsp1, p3, andp4 are
no-op nodes. Dashed edges form chains of no-ops that are blocked by a mutex relation. “m.e.” indicates mutual
exclusion.

A pair of action nodes (possibly no-op nodes) can be related by apersistent mutex relation, i.e., a mutually
exclusive relation holding at every level of the graph and imposes that the involved actions never occur in parallel
in a valid plan. Such relations are pre-computed by an extension of the algorithm presented in [8] to deal with
derived predicates (for lack of space, in this paper we omit a description of the revised algorithm).3

Definition 2 A rule-action graph (RA-graph) of a planning problemΠ with derived predicates is a linear action
graph where

• each fact level can contain two additional types of nodes:rule nodesandderived nodes;

• each rule node is labeled by a grounded rule ofΠ, and eachderived nodeis labeled by the fact derived by a
grounded rule ofΠ;

• each rule node labeledr at a levell is connected by incoming edges to a set of fact nodes atl representing
the triggering facts ofr, and by an outgoing edge to a derived node atl representing the ground predicate
derived byr.4

We call an action precondition node representing a derived fact aderived precondition node, and a node repre-
senting a triggering fact of a grounded rule atriggering node.

Figure 3 gives a simple example of RA-graph containing five action nodes (astart, a1, a2, a3, aend), several
fact nodes representing eight basic facts, some derived nodes representing four derived facts, and some rule nodes
representing three grounded rules.

Each RA-graph represents the partial plan formed by the actions associated with its action nodes, and can
contain someflaws. A flaw at a levell of a RA-graphA is either a precondition node of the action node (or of a
no-op node) at levell that is not supported inA, or a triggering node of a rule node at levell that is not supported.
A basic fact node labeledq at a levell is supportedif there is an action node (or a no-op node) at levell − 1
representing an action with (positive) effectq. A derived node labeledp at level l is supported if there is a rule
node at levell representing a grounded rule derivingp. If a level of a RA-graph has no flaw, we say that this level
is flawless.5

3Mutex relations between actions are defined in accordance with the rule ofno moving targetsdefined by Fox and Long [6], and extended
by Edelkamp and Hoffmann ([5]) to domains with derived predicates.

4Notice that, unlike planning graphs [1] and action graphs, RA-graphs are not acyclic graphs, because they can contain cycles involving
rule nodes and fact nodes.

5Under the assumption that the initial state of the planning problem and the preconditions/effects of each action are consistent, according to
our definition of plan flaw, we have that a levell of a RA-graphA contains a flaw if and only if the state obtained by (1) applying to the initial

4

For example, in the RA-graph of Figure 3, noded4 is supported by the rule node labeledr3, nodep5 is
supported by the action node labeleda1, while p8 andd2 are not supported.

A RA-graph without flaws represents a valid plan and it is called aSolution RA-graph.

Definition 3 A solution RA-graph (valid plan) of a planning problemΠ with derived predicates is a rule-action
graphA of Π such that all levels ofA are flawless.

Note that, as shown in [8], having only one action in each level of a RA-graph does not prevent the generation
of parallel (partially ordered) plans.

The notion of supported facts and the definition of RA-graph can be made stronger by observing that the effects
of an action node can be automatically propagated to the next levels of the graph through the corresponding no-
ops, until there is aninterfering action“blocking” the propagation, or the last level of the graph has been reached
[7]. Moreover, the rule nodes can be automatically “activated” whenever the corresponding triggering nodes are
supported, i.e., a rule node is automatically inserted at a level of the graph (together with its derived fact node, if
not already present) whenever its triggering nodes are all supported at that level. Notice that the no-op propagation
can affect the activation of a rule at any level where the corresponding fact is propagated.

The next definitions incorporate the no-op propagation and the automatic rule activation into the rule-action
graph. The main advantage of this extension is that it leads to a smaller search space, because there is no need to
treat the insertion/removal of no-op and rule nodes as search steps during planning.

In the following,S(l) indicates the world state obtained (under the closed world assumption) by applying to
the problem initial state the actions in the RA-graph up to levell − 1, ordered according to the level of their
corresponding action node.

Definition 4 A rule-action graph with no-op propagation and automatic rule activationof a planning problem
Π is an rule-action graphA such that

• p is a no-op node at a levell ofA iff (i) there is a node at a levelh representing an action with effectp, and
(ii) there is no action node at a levelk which is mutex with the no-op ofp, and such thath ≤ k < l;

• r is a rule node at a levell ofA iff the rule represented byr is activatedbyS(l).

Definition 5 A grounded ruler = (if ϕ1 ∧ · · · ∧ ϕn thenψ) is activated at a levell of a RA-graphA iff, for each
literal ϕi in r, either

• S(l) |= ϕi, or

• there exists an activated rule atl that derivesϕi.

For instance, in the RA-graph of Figure 3, ruler1 is activated at levels 1 and 2, while rulesr2 andr3 are
activated at level 3.

A derived precondition nodep at a levell of a RA-graph with no-op propagation and automatic rule activation
is supported if and only if there is a rule noder at l such thatp is the derived node ofr. It is easy to see that this is
the case if and only ifS(l) |=R ψp, whereψp is the derived fact represented byp. Finally, it is important to observe
that in a RA-graph with no-op propagation and automatic rule activation, the only possible flaws are unsupported
precondition nodes of domain action nodes.

Since in the rest of this paper we will consider only rule-action graphs with no-op propagation and automatic
rule activation, we will abbreviate their name simply to rule-action graphs (leaving implicit that they include the
no-op propagation and automatic rule activation).

3.2 Search Steps for RA-graphs

Given a RA-graphA (search state) containing some flawed level(s), we can generate new RA-graphs (successor
search states) by adding or removing an action nodehelping to repaira flawed level ofA. In order to better exploit
the heuristics described in the next section, in LPG-td such a level is thefirst flawed level ofA.6

state the actions inA up to levell − 1, and (2) augmenting such a state with the preconditions of the action at levell and with the facts of the
triggering nodes of the rule nodes at levell, is inconsistent.

6We have designed and experimentally tested different flaw selection strategies, that are described in [9]. The one preferring flaws at the
earliest level of the graph tends to perform better than the others, and is used as default strategy. For more details and a discussion on this
strategy see the paper mentioned above.

5

And-Search(n, A,PathNodes,Open, s)
Input: An AND-node of the AND-OR rule graphR (n), the activation set under construction (A), the set of AND-nodes ofR

on the search tree path from the search tree root ton (PathNodes), the set of nodes to visit forA (Open), and a world
state (s);

Output: An element of the activation set under construction, false or the empty set.

1. if n ∈ PathNodesthen return false;
2. if s |=R n then return ∅;
3. else ifn is a basic factthen return n;
4. foreachsuccessorn′ of n inR do
5. Or-Search(n′, A, PathNodes ∪ {n}, Open, s);
6. return ∅.

Or-Search(n, A,PathNodes,Open, s)
Input: An OR-node of the AND-OR rule graphR (n), the activation set under construction (A), the set of AND-nodes ofR on

the search tree path from the search tree root ton (PathNodes), the set of nodes to visit forA (Open), and a world state
(s);

Side Effect: Update of the set of activation sets (Σ)

1. Open← Open∪ {n′ | n′ is a successor ofn inR};
2. foreach t ∈ Opendo
3. Open← Open\{t};
4. n′ ← And-Search(t, A, PathNodes, Open, s);
5. if n′ = falsethen return ;
6. elseA← A ∪ {n′};
7. Σ← Σ ∪ {A}.

Figure 4: Algorithms for computing the activation sets (stored in the global variableΣ) of a derived precondition
node by searching on the rule graphR.

When we add an action node to a levell of the RA-graph, the graph is extended by one level and the nodes and
edges at each levell′ ≥ l are shifted one level forward. Similarly, when we remove an action nodea, the RA-graph
is “shrunk” by one level.7

The definition ofHelpful Action Node, that we can add toA, and ofHarmful Action Node, that we can remove
fromA, relies on the notion ofActivation Fact Set(shortlyActivation Set). Essentially, an activation set is a set of
basic facts activating a set of rule nodes supporting a derived precondition node.

Definition 6 Given an unsupported derived precondition noded at a flawed levell of a RA-graph, anactivation
fact setfor d is a minimal setF of basic facts such thatS(l)∪F |=R ψd, whereψd is the derived fact represented
byd.

For example, suppose thatr4= (if p1 ∧ d5 thend2) andr5= (if p3 ∧ p9 thend5) are two additional (inactive)
rules for the RA-graph of Figure 3. We have that{p1, p9} is an activation set ford2 at level2 of the graph. Note
thatp3 is not in the activation set ford2, because at level2 it is already supported.

Definition 7 Given a flawed levell of a RA-graphA, we say that an action node ishelpful for l if its insertion
into A at a leveli ≤ l supports (i) a basic unsupported precondition node atl, or (ii) an (unsupported) node
representing a fact in an activation set for an unsupported derived precondition node atl.

For example, an action node representing an action with effectp1 is helpful for level3 of the RA-graph of
Figure 3, if it is inserted into level2 or 3; while it is not helpful, if it is inserted into level1 becausea1 blocks the
propagation ofp1.

Definition 8 Given a flawed levell of a RA-graphA, we say that an action node at a leveli ≤ l is harmful for l
if its removal fromA either (i) would remove the unsupported precondition nodes atl (i = l), or (ii) would make
an unsupported fact nodef at l supported, wheref is a basic precondition node, or it represents a fact in an
activation set for a derived precondition node atl.

7As discussed in [8], the removal of an action nodea can induce the (automatic) removal of other redundant action nodes (i.e., those action
nodes supporting only the precondition nodes ofa and, recursively, the activation nodes supporting a precondition node of a removable action).

6

For example, the action nodea3 of Figure 3 is harmful for level3, because of the unsupported precondition
nodep1 of a3; a1 is harmful for level 3, because it breaks the no-op propagation ofp1 at level1, that would support
the precondition nodep1 at level3. Notice thata1 is an harmful action node for level3, but it is also an helpful
action node for level2 because it supports the precondition nodep5.

We can identify the activation sets of a derived precondition noded at a levell by using the two mutually
recursive algorithms described in Figure 4. These algorithms perform a complete backward search on the rule
graph.And-Search visits anAND-noden of the rule graph and returns: (i)false, if n is a node already visited on
the path from the root search tree ton (n ∈ PathNodes), and hence the search is pruned to avoid looping; (ii)∅,
if n represents a fact that is entailed byS(l) ∪ D(S(l), R); (iii) n, if the previous cases do not apply, andn is a
basic fact (that will belong to the activation set under construction); (iv)false, otherwise (n together with its sibling
AND-nodes have already been visited).

Or-Search visits anOR-node of the rule graph, and incrementally updates the set of activation sets, which are
stored in the global variableΣ (initially set to the empty set).

For example, providing thats defines the state described in Figure 1,And-Search(above(A,C) , ∅, ∅, ∅, s)
searches in the portion of rule graph of Figure 2, and identifies the set of possible activation sets ofabove(A,C) :
Σ = {{on(A,B) }, {on(A,C) }, {on(A,D) , on(D,C) }, {on(A,D) , on(D,B) , on(B,C) }}.

Note that, the maximum size ofΣ depends on the planning problem and on the search states visited during the
search process. In the worst case, the size ofΣ can be exponential in the numbern of the problem objects involved
by the grounded rules. However, in practice, for all problems we tested from the IPC-4, the number of activation
sets is less than1.2·n2.

4 Local Search in the Space of RA-Graphs

In this section, first we give some background on the stochastic local search procedure used in our approach; then
we present new search heuristics for RA-graphs and a method for restricting the search neighborhood.

4.1 Search Procedure and Basic Neighborhood

Each basic search step identifies theneighborhoodN(l,A) of the current RA-graphA for the earliest flawed level
l, i.e., the set of the RA-graphs obtained fromA by adding a helpful action node forl, or removing a harmful action
node. The elements of the neighborhood are weighed according to anheuristic evaluation functionestimating their
quality, and an element with the best quality is then considered as the next possible RA-graph.

The quality of a RA-graph depends on the number of the flaws it contains, the estimated number of the search
steps required to remove them (thesearch cost), and the overallexecution or temporal cost(depending on the
specified plan metric) of the represented plan. In this paper, we focus on the search cost.

The search strategy used by LPG-td isWalkplan, a method similar to the well-knownWalksat procedure for
solving propositional satisfiability problems [16]. According toWalkplan, the best element in the neighborhood
is the RA-graph which has thelowest decrease of qualitywith respect to the current RA-graph, i.e., it does not
consider possible improvements.

Walkplan uses anoise parameterp to randomize the search. Given a RA-graphA and a flawed levell, if there
is a modification aimed at repairingl that does not decrease the quality ofA, then the corresponding RA-graph is
chosen as the next search state. Otherwise, with probabilityp one of the graphs inN(l,A) is chosen randomly,
and with probability1−p the next RA-graph is chosen according to the minimum value of the evaluation function.
In addition to the use of the noise parameter, in order to escape local minima, the new version of our planner uses
a shorttabu listensuring that the last five search states (RA-graphs) are different.

4.2 Search Heuristics based on Relaxed Plans

In [8, 9], we presented some heuristic evaluation functions implemented in the previous version of our planner. In
this section, we introduce a new heuristic function (E) for RA-graphs. The main differences with respect to the
previous functions are:

• E gives a more accurate estimate of the search cost by taking account ofall the flaws at a given level of the
graph, instead of only one flaw;

• E estimates the search cost for supporting derived preconditions (derived nodes), which are not handled by
the previous functions.

7

EvalAdd(a, l)
Input: An action nodea that does not belong toA and the earliest flawed level ofA;
Output: A set of actions forming a relaxed plan.

1. I ← SR(la); G← Unsup(l);
2. Rplan← RelaxedPlan(Pre(a), I, ∅);
3. A← Rplan ∪ {a}; I ← I − Threats(a) ∪Add(a);
4. Rplan← RelaxedPlan(G ∪ Threats(a), I, A);
5. return Rplan.

EvalDel(a, l)
Input: An action nodea that does not belong toA and the earliest flawed level ofA;
Output: A set of actions forming a relaxed plan.

1. I ← SR(la); G← UnsupDel(l);
2. Rplan← RelaxedPlan(Sup(a), I, ∅);
3. if (la < l) then
4. Rplan← RelaxedPlan(G, I, Rplan);
5. return Rplan.

Figure 5: Algorithms for estimating the search cost of adding/removing an helpful/harmful action node for the
earliest flawed levell of the current RA-graphA.

The first of these differences is an attempt to relax the “flaw-independence assumption” of the previous func-
tions, which in some domains is invalid, and can mislead the search cost evaluation.

The general idea for estimating the search cost of making a levell flawless is to construct a relaxed planπ
for the set of facts represented by the unsupported precondition nodes atl. Suppose that we are evaluating the
RA-graph obtained by adding an action nodea, because it is helpful forl in the current RA-graphA. E uses a
relaxed planπ to compute an estimate of a minimal set of new action nodes required to support

(1) the unsupported precondition nodes ofa,

(2) the flaws remaining atl after addinga toA, and

(3) the supported precondition nodes of other action nodes inA that would becomeunsupported by
addinga.

The larger such a set is, the higher is the estimated search cost. In the following,Pre(a) denotes the set
of facts corresponding to the flaws of (1),Unsup(l) denotes the sets of facts corresponding to the flaws of (2),
andThreats(a) denotes the set of facts corresponding to the flaws of (3). Moreover, we will use some additional
notation:Add(a) is the set of the positive effects of the action represented bya, lx is the level of the nodex in
the RA-graph,ψp denotes the fact represented by the fact nodep, andbf→c indicates that action nodec has a
precondition node representing the factf , which is supported by action nodeb.

The next definition states more precisely when a fact belongs toThreats(a).

Definition 9 Given an action nodea in a RA-graphA, a factf is threatenedby a iff the no-op off anda are
mutex, and:

• there exist (i) two action nodesb, c ∈ A such thatbf→c, lb < la < lc, and (ii) no action nodea′ ∈ A such
thatf ∈ Add(a′) andla < la′ < lc, or

• there exist (i) a derived precondition nodep ∈ A such thatlp > la, S(lp) |=R ψp, S(lp)−{f} 6|=R ψp, and
(ii) no action nodea′ such thatf ∈ Add(a′) andla < la′ < lp.8

LetSR(l) indicate the stateS(l)∪D(S(l), R), whereR is the set of the domain rules. The relaxed plan consists
of two subplans: one forPre(a), and one forUnsup(l) andThreats(a). The initial state of the first subplan is
SR(la), while the initial state of the second isSR(la) modified by the effects ofa. Moreover, the second subplan
can reuse the actions of the first.

The evaluation of an RA-graph in the search neighborhood that is derived byremovingan harmful action node
a is similar.E uses a relaxed planπ to estimate a minimal set of new action nodes required to support

8We use a definition of mutex relation between an action and a no-op which is slightly weaker than the one given by Fox and Long: the
no-op off and an action with positive effectf are not mutex.

8

RelaxedPlan(G, I, A)

Input: A set of goal facts (G), an initial state for the relaxed plan (I), a set of reusable actions (A).
Output: The set of actionsActs forming a relaxed plan forG from I.

1. G← G− I; Acts← A;
2. F ←

⋃
a∈Acts Add(a);

3. F ← F ∪D(I ∪ F, R);
4. while G− F 6= ∅
5. if g is a basic fact inG− F then
6. b← BestAction(g);
7. Rplan← RelaxedPlan(Pre(b), I, Acts);
8. Acts← Aset(Rplan) ∪ {b};
9. F ←

⋃
a∈Acts Add(a);

10 F ← F ∪D(I ∪ F, R);
11. else/* g is a derived fact */
12. Σ← ∅; /* Σ is a set of activation sets */
13. And-Search(g, ∅, ∅, ∅, I ∪ F); /* UpdateΣ */
14. H ← BestActivationSet(Σ);
15. G← G− {g} ∪ {H};
16. return Acts.

Figure 6: Algorithm for computing a relaxed plan achieving a set of action preconditions from the initial stateI.

(1) the precondition nodes supported bya (possibly through no-op propagation of its effects and auto-
matic rule activation) that would becomeunsupported by removinga;

(2) whenla precedes the flawed levell under reparation, the unsupported precondition nodes at levell
that do not become supported by removinga.9

We denote the set of facts corresponding to the precondition nodes of (1) withSup(a), and the set of facts
corresponding to the preconitions nodes of (2) withUnsupDel(l).

More formally, the heuristic evaluation of the RA-graph obtained by adding a helpful action nodea (E(a, l)i)
or by removing a harmful action nodea (E(a, l)r) for a flawed levell is defined as follows:

E(a, l)i = |π(a, l)i|+
∑

a′∈π(a,l)i |Threats(a′)|

E(a, l)r = |π(a, l)r|+
∑

a′∈π(a,l)r |Threats(a′)|

whereπ(a, l)i andπ(a, l)r are sets of actions forming two relaxed plans, and are computed by the algorithms
EvalAdd(a, l) andEvalDel(a, l) given in Figure 5, respectively. Such sets are incrementally constructed using the
RelaxedPlan subroutine given in Figure 6.

EvalAdd(a, l) runs RelaxedPlan twice, first with goalsPre(a) (step 2), and then with goalsUnsup(l) ∪
Threats(a) (step 4). EvalDel(a, l) runsRelaxedPlan on Sup(a) (step 2) and, ifla < l, onUnsupDel(l) (step
4).

RelaxedPlan constructs a relaxed plan through a recursive backward process that can reuse a possibly non-
empty input set of actionsA. The action chosen at step 6 to achieve abasic(sub)goalg is an actiona′ such that
(i) g is an effect ofa′; (ii) all preconditions ofa′ are reachable fromI; (iii) reachability of the preconditions of
a′ requires a minimum number of actions, estimated as the maximum of the heuristic number of actions required
to support each preconditionp of a′ from SR(la) (Num acts(p, la)); (iv) a′ subverts the minimum number of
supported precondition nodes ofA.

Formally, at step 6BestAction(g) returns an action satisfying

ARGMIN
{a′∈Ag}

{
MAX

p∈Pre(a′)−F
Num acts(p, la) + |Threats(a′)|

}
,

whereAg = {a′ ∈ O | a ∈ Add(a), O is the set of all actions,∀p ∈ Pre(a) Num acts(p, la) ≥ 0}; F is the
set of positive effects of the actions currently inActsaugmented with the facts derived using the domain rulesR
on I ∪ F .10 Num acts(p, la) is computed byreachability analysisusing a polynomial algorithm similar to the

9When we removea, we remove botha and all its precondition nodes. Ifla < l, some precondition nodes atl can remain unsupported.
10The setO does not contain operator instances with mutually exclusive preconditions. In principle,Ag can be empty becauseg might

not be reachable fromSR(la) (i.e., b = ∅). RelaxedPlan treats this special case by forcing its termination and returning a set of actions

9

Planner Solved Attempted Success ratio Planning capabilities at IPC-4
LPG-td 845 1074 79% Propositional + DP, Metric-Temporal +TIL

SGPLAN 1090 1415 77% Propositional + DP, Metric-Temporal +TIL
P-MEP 98 588 17% Propositional, Metric-Temporal +TIL
CRIKEY 364 594 61% Propositional, Metric-Temporal

LPG-IPC3 306 594 52% Propositional, Metric-Temporal
DOWNWARD (DIAG) 380 432 88% Propositional + DP

DOWNWARD 360 432 83% Propositional + DP
MARVIN 224 432 52% Propositional + DP
YAHSP 255 279 91% Propositional

MACRO-FF 189 332 57% Propositional
FAP 81 193 42% Propositional

ROADMAPPER 52 186 28% Propositional
TIL SAPA 63 166 38% TIL
OPTOP 4 50 8% TIL

Table 1: Number of problems attempted, solved, and success ratio of the planners that took part in the 4th IPC.
“DP” means derived predicates; “TIL” means timed initial literals; “Propositional” meansSTRIPSor ADL . The
planning capabilities are the PDDL2.2 features in the test problems attended by each planner at IPC-4.

one proposed in [8], which for lack of space we omit. The main difference concerns the treatment of the derived
preconditions affecting the reachability information of other basic and derived facts.11

When the (sub)goalg is aderivedfact (step 11),RelaxedPlan computes the setΣ of the activation sets forg,
and it constructs a relaxed plan for the facts contained in thebestactivation setH ∈ Σ (steps 12–14). In particular,
the algorithm usesAnd-Search to computeΣ (step 13), and then selects fromΣ a setH such that

• all facts inH are reachable fromI, and their reachability requires a minimum number of actions;

• the insertion of an actionah to achieve a factsh in H threats a minimum number of precondition nodes in
the RA-graph.

More formally, at step 14BestActivationSet(Σ) returns an activation set satisfying

ARGMIN
{H∈Σ}

{
MAX
h∈H−F

[
Num acts(h, la)+|Threats(ah)|

]}
,

where

ah = ARGMIN
{a′∈Ah}

{
MAX

p∈Pre(a′)
Num acts(p, la)

}
,

andAh is defined analogously toAg in BestAction(g).

4.3 Neighborhood Restrictions

In general, the effectiveness of a heuristic function evaluating the elements of the search neighborhood can be
significantly affected by the size of the neighborhood. If this is too large, the neighborhood evaluation might
require too much time, and a less accurate (but faster) evaluation function could be more adequate. Since the basic
search neighborhood can be very large, we developed some techniques for restricting it, which are described and
experimentally evaluated in [9]. Here we present a new additional restriction technique for both STRIPS domains
and domains involving derived predicates. We tested this techniques on the IPC-4 benchmark domains, where it
was very effective.

Assume that at the flawed level under consideration we have a setU of unsupported precondition nodes. For
each derived noded in U , we chooseoneof its activation sets by evaluating each of them usingRelaxedPlan with
the activation set as goal set. The selected activation set is one with the best relaxed plan (fewest number of actions
and threats). Moreover, the facts in the selected activation set must not be mutex with the preconditions nodes at
the flawed levell under consideration. (If this were the case, the truth of the facts in activation set would make
impossible to support all precondition nodes atl.)

including a special action with very high execution cost, leadingE to consider the element of the neighborhood under evaluation a bad possible
next search state [8]. For clarity, we omit these details from the description of the algorithm in Figure 6.

11If a (basic or derived) factp is not reachable, thenNum acts(p, la) is set to a negative number.

10

 10

 100

 1000

 10000

 100000

 1e+06

 0 4 8 12 16 20 24 28 32 36 40 44 48

Promela-Philosophers-DerivedAdlMilliseconds

LPG-td (48 solved)
Downward (48 solved)

Downward (Diagonally) (48 solved)
Marvin (30 solved)

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

PSR-Middle-DerivedStripsMilliseconds

LPG-td (50 solved)
SGPlan (50 solved)

Figure 7: Performance of LPG-td and some IPC-4 planners in two benchmark domains involving derived predi-
cates. On the x-axis we have the problem names (abbreviated by numbers). On the y-axis, we have CPU-time (log
scale).

Then, we consider the union of all selected activation sets (one for eachd in U) and the set of facts correspond-
ing to the basic precondition nodes that are not supported atl. From the resulting set of factsK, we choose one
elementk and we restrict the neighborhoodN(l,A) of the current RA-graphA to contain only the RA-graphs of
N without the action node atl and the RA-graphs with a new action node supportingk at l.

In order to choosek from K, we use a strategy similar to the “least-commitment flaw-selection” strategy
in partial-order causal link planning [15]:k is the fact that can be supported by the fewest number of graph
modifications toA (either inserting of a helpful action or removal of a harmful action).

5 Experimental Results

The techniques presented in this paper have been implemented in the LPG-td planner, which took part in the fourth
International Planning Competition (IPC-4) obtaining the 2nd prize in the suboptimal metric-temporal track, and
showing good performance in the suboptimal propositional track.12 In this section, we present some experimental
results illustrating the performance of LPG-td using the test problems of the IPC-4.13 These problems belong to

12The system is available fromhttp://lpg.ing.unibs.it .
13All tests were conducted on the competition machine, an Intel Xeon(tm) 3 GHz 1 Gbytes of RAM. The CPU-time limit for each test was

30 minutes. We ran LPG-td with the same default settings for every problem attempted.

11

 10

 100

 1000

 10000

 100000

 1e+06

Airport-StripsMilliseconds

LPG-td (45 solved)
Downward (50 solved)
SGPlan (44 solved)
YAHSP (36 solved)

03 01 02 10 04 05 11 13 12 06 07 08 15 09 14 16 17 18 20 19 21 36 24 23 25 38 26 22 37 27 28 41 30 31 29 34 33 32 35 40 39 43 46 44 42 45 47 48 49 50

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

PSR-SmallMilliseconds

LPG-td (49 solved)
Downward (50 solved)
SGPlan (47 solved)
YAHSP (48 solved)

01 06 14 17 23 28 13 24 41 21 03 45 02 27 07 08 09 37 32 18 20 05 39 29 04 10 12 33 43 47 11 50 26 38 30 34 44 16 46 35 19 15 22 48 42 40 25 31 36 49

Figure 8: Performance of LPG-td and the other awarded IPC-4 planners in theSTRIPSvariant of two benchmark

domains. On the x-axis we have the problem names (abbreviated by numbers). On the y-axis, we have CPU-time
(log scale).

several domains, and each domain has some variants involving different features of PDDL2.1 or PDDL2.2.14

Table 1 gives summary results for all the domain variants of IPC-4. LPG-td and SGPLAN are the only planners
supporting all the major features of PDDL2.1 and PDDL2.2. Both planners have a good success ratio (close to
80%). DOWNWARD and YAHSP have a success ratio better than LPG-td and SGPLAN , but they handle only
propositional domains (the first with derived predicates).

SGPLAN attempted more problems than LPG-td because it was tested also on the “compiled version” of the
variants with derived predicates and “timed initial literals” (the new features of PDDL2.2).15 Moreover, LPG-td did
not attempt the numerical variant of the two versions of thePromela domain and theADL variant ofPSR-large ,
because they use equality in some numerical preconditions or conditional effects, which currently our planner does
not support.

Since our main focus in this paper is planning with derived predicates, we compare LPG-td with the other
IPC-4 planners using some variants of the benchmark domains containing derived predicates:PSR-Middle , and
the two versions ofPromela (Philosophers andOptical-Telegraph). We consider only the planners that
used the same formalization of the domains, because we believe that comparing the performance when different
formalizations are used can be misleading.16

14For a description and formalization of the IPC-4 benchmark problems and domains, seehttp://ls5-www.cs.uni-
dortmund.de/ ∼edelkamp/ipc-4/index.html .

15Such versions were generated for planners that do not support these features of PDDL2.2, which are supported by LPG-td.
16Most domain variants had both aSTRIPS version and anADL version, which the competitors were free to choose for their tests. In

12

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20 25 30 35 40 45 50

Airport/StripsMilliseconds

LPG-td (45 solved)
LPG-IPC3 (21 solved)

Figure 9: Performance of LPG-td and LPG-IPC3 in the IPC-4 domainAirport (STRIPSversion). On the x-axis
we have the problem names (abbreviated by numbers), while on the y-axis, we have the CPU-time (log scale).

Figure 7 shows the CPU-time (in logarithmic scale) of the IPC-4 planners forPhilosophers andPSR-Middle .
In the first domain, both LPG-td and DOWNWARD solve 48 problems, while MARVIN solves 30 problems. LPG-td
is generally faster than the other planners, except for a few problems where DOWNWARD performs better than
LPG-td. InPSR-Middle both SGPLAN and LPG-td solve all problems, but LPG-td is generally faster.

RegardingOptical-Telegraph with derived predicates, LPG-td did not perform as well as DOWNWARD,
which solved more problems and was generally faster than LPG-td. We believe that the main reason of this is
related to the particular structure of these benchmark problems (and of their search space), in which LPG-td’s
heuristics are less effective, more than to the method used for representing and managing derived predicates.

Figure 8 gives sample results from IPC-4 in theSTRIPSvariant of two test domains (Airport andPSR-Small).
In these plots the problems on the x-axis are ordered according to their increasing difficulty for LPG-td. Overall,
compared to the IPC-4 top-performerSTRIPS-planner DOWNWARD, LPG-td is faster in solving most of the prob-
lems. However, DOWNWARD performs better in most of the largestAirport problems, and in some of the largest
PSRproblems. InAirport , SGPLAN performs slightly worse than LPG-td, while YAHSP performs very well
in several problems, but poorly in some others, and overall solves fewer problems than LPG-td. InPSR, overall
SGPLAN and YAHSP perform similarly to LPG-td.

Concerning plan quality, the results of an analysis of the official results of IPC-4 show that the quality of the
plans produced byLPG-td is generally better than the plan quality of the other planners, in terms of both the number
of plan actions and the plan metric in the problem specification. (These results are available in the web page of
LPG http://lpg.ing.unibs.it .)

The summary results of Table 1 show that, the success ratio of LPG-IPC3 (the version of our planner that
was awarded at the previous competition), is significantly lower than the one of LPG-td. The main reasons of this
improvement are the revised search and neighborhood restriction heuristics that we have presented in this paper.

Figure 9 compares the CPU-time of LPG-IPC3 and LPG-td for theSTRIPSvariant of AIRPORT. LPG-td is
up to two orders of magnitude faster than the previous version of the planner, and solves many more problems.
Finally, we compared LPG-td and LPG-IPC3 also using the benchmark domains of IPC-3, and overall the new
version of the planner was significantly faster (for more details, see the web page of LPG).

6 Conclusions

We have presented some new techniques for planning in domains involving derived predicates, an important feature
supported by the recent PDDL2.2 language.

Our methods extend the “planning through action graphs and local search” approach previously developed and
implemented in the LPG planner by (i) including a rule graph to support a simple form of reasoning about derived
predicates in the search states produced by the plan actions; (ii) augmenting the action graph representation with

Philosophers , LPG-td attempted theADL version, SGPLAN theSTRIPSversion; inPSR, LPG-td attempted theSTRIPSversion, DOWN-
WARD and MARVIN theADL version.

13

additional nodes and arcs representing (automatically triggered) domain rules; (iii) defining a new search space
formed by such rule-augmented action graphs, (iv) designing new heuristics based on relaxed plans to guide a
local search process, and to restrict the search neighborhood for speeding up the search.

Our techniques are implemented in a new version of LPG, which showed good performance in many bench-
mark problems from IPC-4 and IPC-3. Current and future work includes a more detailed analysis of the empirical
results of IPC-4, the study of further heuristics to improve the search neighborhood evaluation, and more effective
techniques for selecting the best activation set of a derived precondition.

References
[1] Blum, A., and Furst, M. 1997. Fast planning through planning graph analysis.Artificial Intelligence90:281–300.

[2] Barret, A., Christianson, D., Friedman, M., Kwok, C., Golden, K., Penberthy, S., Sun, Y., Weld, D. 1995. UCPOP User’s
Manual .T.R. 93-09-08d, The University of Washington, Computer Science Department.

[3] Chen, Y., Hsu, C,. and Wha, W. 2004. SGPlan: Subgoal Partitioning and Resolution in PlanningIn Abstract Booklet of
the competing planners of ICAPS-04.

[4] Coles, A., and Smith, A. 2004. Marvin: Macro Actions from Reduced Versions of the InstanceIn Abstract Booklet of the
competing planners of ICAPS-04.

[5] Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language for the Classic Part of the 4th International Planning
Competition.T.R. no. 195: Institut für Informatik, Freiburg, Germany.

[6] Fox, M., and Long, D. 2003 PDDL2.1: An Extension to PDDL for Expressing Temporal Planning DomainsJAIR
20:61–124.

[7] Gerevini, A., and Serina, I. 2002. LPG: A planner based on local search for planning graphs with action costs. InProc. of
AIPS-02.

[8] Gerevini, A., Saetti, A., and Serina, I. 2003. Planning through Stochastic Local Search and Temporal Action Graphs.JAIR
20:239–290.

[9] Gerevini, A., Saetti, A., and Serina, I. 2004. An Empirical Analysis of Some Heuristic Features for Local Search in LPG.
Proc. of ICAPS-04.

[10] Helmert, M. 2004. A Planning Heuristic Based on Causal Graph Analysis.Proc. of ICAPS-04.

[11] McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear planning. InProc. of AAAI-91.

[12] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Velosa, M., Weld, D., and Wilkins, D. 1998. PDDL -
The Planning Domain Definition LanguageT.R. CVC TR98-003/DCS TR-1165, Yale Center for Computational Vision and
Control

[13] Nguyen, X., and Kambhampati, S. 2001. Reviving partial order planning. InProc. of IJCAI-01.

[14] Penberthy, J., and Weld, D. 1992. UCPOP: A sound, complete, partial order planner for ADL.Proc. of KR’92.

[15] Pollack, M.E. and Joslin, D. and Paolucci, M. Flaw Selection Strategies for Partial-Order Planning.JAIR 6:223–262.
1997.

[16] Selman, B., Kautz, H., and Cohen, B. 1994. Noise strategies for improving local search. InProc. of AAAI-94.

[17] Thièbaux, S., Hoffmann, J., and Nebel, B. 2003. In defense of PDDL Axioms.Proc. of IJCAI-03.

14

