Planning with Derived Predicates through
Rule-Action Graphs and Relaxed-Plan Heuristics

Alfonso Gerevini Alessandro Saetti Ivan Serina Paolo Toninelli
Dipartimento di Elettronica per I’Automazione,
Universit degli Studi di Brescia
Via Branze 38, 1-25123 Brescia, Italy
{gerevini,saetti,serina }@ing.unibs.it

Abstract

The ability to express “derived predicates” in the formalization of a planning domain is both practically and
theoretically important. The recent PDDL2.2 language supports derived predicates, which can be expressed by
“domain rules”.

We propose an approach to planning with derived predicates where the search space consists of particular
graphs of actions and rules, callede-action graphsrepresenting partial plans. We present (i) some techniques
for managing domain rules in the context of a local search process for rule-action graphs, (ii) new heuristics for
guiding the search, and (iii) a new method for restricting the search neighborhood to speed up the search.

The proposed approach and techniques are implemented in a new version of the LPG planner, which took part
in the fourth International Planning Competition showing good performance in many benchmark problems.

1 Introduction

In classical domain-independent planning, derived predicates are predicates that the domain actions can only indi-
rectly affect. Their truth in a state can be inferred by particular axioms, that enrich the typical operator description
of a planning domain.

As discussed in [17, 5], derived predicates are practically useful to express in a concise and natural way some
indirect action effects, such as updates on the transitive closure of a relation. Moreover, compiling them away
by introducing artificial actions and facts in the formalization is infeasible because, in the worst case, we have
an exponential blow up of either the problem description or the plan length [17]. This suggests that is worth
investigating new planning representation and algorithms supporting derived predicates, rather than using existing
methods with “compiled” problems.

The first version of PDDL [12], the language of the International Planning Competitions, supports derived
predicates as particular “axioms”, and the recent PDDL2.2 [5] version re-introduces them as one of the two new
features for the benchmark domains of the 2004 International Planning Competition (IPC-4). Some methods for
handling derived predicates have been developed and implemented in several planning systems, sectpas U
[2] and the very recent plannerso’NWARD [10], SGR.AN [3] and MARVIN [4].

In this paper, we present some techniques for planning with derived predicates, which are implemented in a
new version of the LPG planner [8] called LPGdDur methods extend an approach to planning in a space of
action graphgepresenting partial plans, which is explored by a local search process.

The main contributions of this work are:

e a method based oAND-OR-graphs for representing and managing the domain rules defining the derived
predicates in the domain formalization;

e a plan representation for domains with derived predicates based on particular graphsuedction
graphs

e some techniques exploiting particular relaxed plans for the heuristic evaluation and restriction of the search
neighborhood (both for simpleTrRIPSdomains and domains involving derived predicates);

e some experimental results from IPC-4 illustrating the effectiveness of our techniques.

1The “td” suffix is an abbreviation of “Derived predicates and Timed initial literals”, the two new features of PDDL2.2 with respect to
PDDL2.1 [6].

it on(z,y) V3Iz (on(z, 2) A above(z,y)) then above(z, y)

\ \
[[

s ={ ontable(A) , ontable(D) ,on(C,D) ,on(B,C) ,above(B,C) ,above(C,D) ,above(B,D) }

Figure 1. Example of domain rule deriving a predicate in the blocks world, and of asstdtereabove(B,C) ,
above(C,D) andabove(B,D) are ground derived predicates.

The rest of the paper is organized as follows. The second section introduces our representation of derived
predicates; the third section presents rule-action graphs; the fourth section gives some new search techniques; the
fifth section describes some experimental results from IPC-4; finally, the last section gives the conclusions.

2 Representing Derived Predicates: the Rule Graph

In PDDL2.2, derived predicates are particular predicates that do not appear in the (positive or negative) effects of
any domain action. The truth value of a derived predicate is determined by acs®mhafn rulesof the form

if &z thenP(7),

whereP(7) is the derived predicate; is a tuple of variables, the free variableslig are exactly the variables in

z, and®z is a first-order formula such that the negated normal form (NNFyptioes not contain any derived
predicate in negated forf.The last syntactic restriction has the semantical motivation of ensuring that there is
never a negative interaction between the application of rules in a world state (for more details see [5]).

Figure 1 shows a typical example of derived predicateye) in the blocks world. A block: is above 1y, if
xison y, or itison a third blockz, which isabove y. Above is the transitive closure of than relation.

In the rest of the paper, we call a ground predicate appearing in the initial state, problem goals, or in the
preconditions or effects of a domain actiohasic fact we call a ground derived predicate obtained by substituting
each variable in the derived predicate of a rule with a constdetiaed fact

A grounded ruleis a rule where every predicate argument is a constant. Given a rul@ o then P(T))
and a tuple of constants(|z| = |¢|), we can derive an equivalesétof grounded rule§’ by substituting in- the
¢-constants for the correspondimgvariables, and applying the following transformations to the resulting rule:

e &;is transformed into negated normal form;

e Each literal with an existentially quantified variable is replaced by a disjunction of literals where the variable
is substituted by a constant of the planning problem (one disjunct for each constant);

Each literal with an universally quantified variable is replaced by a conjunction of literals obtained by sub-
stituting the variable with every constant of the planning problem (one conjunct for each constant);

® is transformed into disjunctive normal fornby = ¢! V...V ¢*, whereg® is a ground literal { < i < k);

For eachy’ in @, the grounded rulé ¢’ then P(¢) is added td".

Given a planning problem and a gebf rules defining the derived predicates of the domain, we can then derive
an equivalent sek of grounded rules. We call the left hand side (LHS) of each rulR thetriggering condition
of the rule, and the conjoined facts forming the LHS of the rulettiggering factsof the rule.

We represent the domain grounded rulethrough aRule Graph which is defined as follows.

Definition 1 Therule graph of a planning problenil with derived predicates defined by a set of rulesés a
directedAND-OR-graph such that:

2|n a NNF formula, negation occurs only in literals.

Grounded Rules

r1:if on(A,D) A above(D,C) above (A,C)
thenabove(A,C)

ro: if on(A,C)
thenabove(A,C)

r3: if on(A,B) A above(B,C)
thenabove(A,C)

r4 :if on(D,A) A above(A,C)
thenabove(D,C)

rs : if on(D,C)
thenabove(D,C)

re: if on(D,B) A above(B,C)
thenabove(D,C)

r7: if on(B,D) A above(D,C)
thenabove(B,C)

rg : if on(B,C)
thenabove(B,C)

7-9:itfhcégng,gee(BA’g)bove(A,C) ‘on(D,A)‘ ‘on(D,C# ‘on(D,B)‘ ‘on(B,D)‘ ‘on(B,C)‘ ‘on(B,A)‘

N

‘on(A,D)‘ ‘ above (D,C# ‘on(A,C)‘ ‘ above (B,Ci ‘on(A,B)‘

ol ® ®

Figure 2: A portion of the rule graph for a blocks world domain with the domain rule and objects of Figure 1.
Circle nodes represeitr-nodes; square nodes represenb-nodes. Multiple edges joined by an arc connect

a domain rule to a set ofND-nodes representing the triggering condition of the rule. For instance, the nodes
labeledon(A,D) andabove(D,C) areAND-nodes representing the triggering condition of myleabove(D,C)

is a derived fact that can be obtained by applying three rulgs-§ andrg) represented by threer-nodes with
incoming edges from theND-node labeledbove(D,C)

e AND-nodes are either (i) leaf nodes labeled by basic fact,afr (ii) nodes labeled by derived facts Iif
OR-nodes are labeled by grounded rulesirand are not leaf nodes.

e EachAnD-nodep is connected to a set @RrR-nodes representing the grounded rules deriving Each
OR-node labeled- is connected to a set efND-nodes representing the triggering conditionrof

Figure 2 gives an example of rule graph. Notice that, in general, eaaiode in a rule graph has a single
incoming edge, because of the syntax of the rules defining derived predicates.

Given a states, and a set of domain rule’, we denote withD(s, R) the set of the derived facts obtained by
applying the rules iR to s with an arbitrary order until no new fact can be derived. In other woklls, R) is
the least-fixed point over all possible applications of the rules to the state where the derived facts are assumed to
be false (because under the closed world assumption, they do not belgndtoalgorithm for derivingD(s, R)
is given in [5].

In the rest of the paper, we abbreviate D(s, R) = 1 with s =5 1, where}= is the logical entailment under
the closed world assumption enandv is a (basic or derived) fact.

3 A Plan-based Search Space

Like in partial-order causal-link planning, e.g., [14, 11, 13], in our approach we search in a space of partial plans,
where each search state is a particular graph representing a plan under construction. In this section, we present
our plan representation for domains with derived predicates, and the basic search steps (graph modifications) for
exploring the search space.

3.1 Search State: Rule-Action Graph

We represent a (partial) plan in a domain with derived predicates through an extension of the linear action graph
representation [7, 8], which we cd&tule-augmented Action Grain, shortly,Rule-Action Graph

A linear action graph4 for a planning problenil is a directed acyclic leveled graph alternatintpet level
and araction level Fact levels contain basfact nodeseach of which is labeled by a ground predicat&loEach
action level contains one action node labeled by the name of a domain action that it represemtsppnbdes
defined as in [1]. An action node labeledat a levell is connected by (i) incoming edges from the fact nodes
at levell representing the preconditions @{precondition nodés and (ii) by outgoing edges to the fact nodes at
levell + 1 representing the effects af(effect nodes

The initial level contains the special action nadg,,;, and the last level the special action nadg,. The
effect nodes oh,,; represent the positive facts of the initial statdhfand the precondition nodes @f,,,; the
goals ofII.

Level 1 Level2 Level3 Goallevel

ACTIVATED RULES:
ry: if P3 thendy, ry: if D6 thends, rs: if d3 A P4 thend,y

Figure 3: A simple example of rule-augmented action graph. Square nodes are action nodes. Diamond nodes are
rule nodes; circle nodes are (basic or derived) fact nodes. The square nodes marked by ghegacadp, are

no-op nodes. Dashed edges form chains of no-ops that are blocked by a mutex relation. “m.e.” indicates mutual
exclusion.

A pair of action nodes (possibly no-op nodes) can be related fisrsistent mutex relatign.e., a mutually
exclusive relation holding at every level of the graph and imposes that the involved actions never occur in parallel
in a valid plan. Such relations are pre-computed by an extension of the algorithm presented in [8] to deal with
derived predicates (for lack of space, in this paper we omit a description of the revised algérithm).

Definition 2 A rule-action graph (RA-graph) of a planning probledd with derived predicates is a linear action
graph where

e each fact level can contain two additional types of nodate nodesandderived nodes;

e each rule node is labeled by a grounded ruldlpfand eachderived nodes labeled by the fact derived by a
grounded rule ofI;

e each rule node labeled at a levell is connected by incoming edges to a set of fact nodésegiresenting
the triggering facts of-, and by an outgoing edge to a derived nodé etpresenting the ground predicate
derived byr.4

We call an action precondition node representing a derived faetiged precondition nodend a node repre-
senting a triggering fact of a grounded rul&iggering node

Figure 3 gives a simple example of RA-graph containing five action nades.{, a1, as, as, aend), Several
fact nodes representing eight basic facts, some derived nodes representing four derived facts, and some rule nodes
representing three grounded rules.

Each RA-graph represents the partial plan formed by the actions associated with its action nodes, and can
contain somdlaws A flaw at a levell of a RA-graphA is either a precondition node of the action node (or of a
no-op node) at levdlthat is not supported i, or a triggering node of a rule node at levé¢hat is not supported.

A basic fact node labeled at a levell is supportedif there is an action node (or a no-op node) at level 1
representing an action with (positive) effect A derived node labeled at levell is supported if there is a rule
node at level representing a grounded rule derivinglf a level of a RA-graph has no flaw, we say that this level
is flawless®

SMutex relations between actions are defined in accordance with the raterabving targetslefined by Fox and Long [6], and extended
by Edelkamp and Hoffmann ([5]) to domains with derived predicates.

4Notice that, unlike planning graphs [1] and action graphs, RA-graphs are not acyclic graphs, because they can contain cycles involving
rule nodes and fact nodes.

SUnder the assumption that the initial state of the planning problem and the preconditions/effects of each action are consistent, according to
our definition of plan flaw, we have that a levedf a RA-graphA contains a flaw if and only if the state obtained by (1) applying to the initial

For example, in the RA-graph of Figure 3, node is supported by the rule node labelegl nodeps is
supported by the action node labeled while ps andd, are not supported.
A RA-graph without flaws represents a valid plan and it is call&bktion RA-graph

Definition 3 A solution RA-graph (valid plan) of a planning probleniI with derived predicates is a rule-action
graph A of IT such that all levels ofd are flawless.

Note that, as shown in [8], having only one action in each level of a RA-graph does not prevent the generation
of parallel (partially ordered) plans.

The notion of supported facts and the definition of RA-graph can be made stronger by observing that the effects
of an action node can be automatically propagated to the next levels of the graph through the corresponding no-
ops, until there is amterfering action“blocking” the propagation, or the last level of the graph has been reached
[7]. Moreover, the rule nodes can be automatically “activated” whenever the corresponding triggering nodes are
supported, i.e., a rule node is automatically inserted at a level of the graph (together with its derived fact node, if
not already present) whenever its triggering nodes are all supported at that level. Notice that the no-op propagation
can affect the activation of a rule at any level where the corresponding fact is propagated.

The next definitions incorporate the no-op propagation and the automatic rule activation into the rule-action
graph. The main advantage of this extension is that it leads to a smaller search space, because there is no need to
treat the insertion/removal of no-op and rule nodes as search steps during planning.

In the following, S(!) indicates the world state obtained (under the closed world assumption) by applying to
the problem initial state the actions in the RA-graph up to lével1, ordered according to the level of their
corresponding action node.

Definition 4 Arule-action graph with no-op propagation and automatic rule activationof a planning problem
ITis an rule-action graph4 such that

e pis ano-op node at a levélof A iff (i) there is a node at a levél representing an action with effegtand
(ii) there is no action node at a levélwhich is mutex with the no-op ¢f and such thah < k < I;

e ris arule node at a levdlof A iff the rule represented byis activatedby S(1).

Definition 5 A grounded ruler = (if o1 A --- A @, theny) is activated at a levell of a RA-graphA iff, for each
literal o, in r, either

e S(I) = i, 0r
e there exists an activated rule athat derivesp;.

For instance, in the RA-graph of Figure 3, rulgis activated at levels 1 and 2, while rules andr; are
activated at level 3.

A derived precondition node at a levell of a RA-graph with no-op propagation and automatic rule activation
is supported if and only if there is a rule nodat! such thap is the derived node of. It is easy to see that this is
the case if and only i (1) ="t ¢,,, wherey, is the derived fact represented pyFinally, it is important to observe
that in a RA-graph with no-op propagation and automatic rule activation, the only possible flaws are unsupported
precondition nodes of domain action nodes.

Since in the rest of this paper we will consider only rule-action graphs with no-op propagation and automatic
rule activation, we will abbreviate their name simply to rule-action graphs (leaving implicit that they include the
no-op propagation and automatic rule activation).

3.2 Search Steps for RA-graphs

Given a RA-graph4 (search state) containing some flawed level(s), we can generate new RA-graphs (successor
search states) by adding or removing an action radiging to repaira flawed level ofd. In order to better exploit
the heuristics described in the next section, in LPG-td such a level fsshiiawed level ofA.

state the actions inl up to levell — 1, and (2) augmenting such a state with the preconditions of the action at kvelwith the facts of the
triggering nodes of the rule nodes at lelgk inconsistent.

5We have designed and experimentally tested different flaw selection strategies, that are described in [9]. The one preferring flaws at the
earliest level of the graph tends to perform better than the others, and is used as default strategy. For more details and a discussion on this
strategy see the paper mentioned above.

And-Search(n, A, PathNodes, Open, s)
Input An AND-node of the AID-OR rule graphR (n), the activation set under constructiof)(the set of AiD-nodes ofR
on the search tree path from the search tree roat iBathNode} the set of nodes to visit fad (Open), and a world
state 6);
Output An element of the activation set under construction, false or the empty set.

if n € PathNodeghen return false
if s =% nthen return ¢;
else ifn is a basic facthen return n;
foreach successor’ of n in R do
Or-Search(n’, A, PathNodes U {n}, Open s);
return 0.

oukwnpE

Or-Search(n, A, PathNodes, Open, s)
Input An or-node of the AID-OR rule graphR (n), the activation set under constructiof)(the set of A\D-nodes ofR on
the search tree path from the search tree roat BathNode} the set of nodes to visit fod (Oper), and a world state

(s);
Side EffectUpdate of the set of activation sefs)(

1. Open— OpenU {n' | n’ is a successor of in R};
2. foreacht € Opendo

3. Open«— Open\{t};

4, n' «— And-Search(t, A, PathNodesOpen s);
5. if n’ = falsethen return;

6 elsed — AU {n'};

7. L« SU{A}

Figure 4: Algorithms for computing the activation sets (stored in the global vardté a derived precondition
node by searching on the rule graRh

When we add an action node to a lelef the RA-graph, the graph is extended by one level and the nodes and
edges at each levEl> [are shifted one level forward. Similarly, when we remove an action notlee RA-graph
is “shrunk” by one level.

The definition ofHelpful Action Nodethat we can add tgl, and ofHarmful Action Nodethat we can remove
from A, relies on the notion oActivation Fact Sefshortly Activation Set Essentially, an activation set is a set of
basic facts activating a set of rule nodes supporting a derived precondition node.

Definition 6 Given an unsupported derived precondition naicet a flawed level of a RA-graph, aractivation
fact setfor d is a minimal sef of basic facts such that (/) U F = ¢4, wherey, is the derived fact represented
by d.

For example, suppose that= (if p; A ds thends) andrs= (if p3 A pg thends) are two additional (inactive)
rules for the RA-graph of Figure 3. We have that, ps} is an activation set fod, at level2 of the graph. Note
thatps is not in the activation set faf,, because at levélit is already supported.

Definition 7 Given a flawed levdl of a RA-graphA, we say that an action node feelpful for [if its insertion
into A at a leveli < [supports (i) a basic unsupported precondition nodé,air (i) an (unsupported) node
representing a fact in an activation set for an unsupported derived precondition néde at

For example, an action node representing an action with effet helpful for level3 of the RA-graph of
Figure 3, if it is inserted into leved or 3; while it is not helpful, if it is inserted into level because:;, blocks the
propagation op;.

Definition 8 Given a flawed levdl of a RA-graphA, we say that an action node at a levek [is harmful for [

if its removal fromA either (i) would remove the unsupported precondition nodégat 1), or (ii) would make
an unsupported fact nodg at I supported, wher¢ is a basic precondition node, or it represents a fact in an
activation set for a derived precondition nodel at

7As discussed in [8], the removal of an action nadean induce the (automatic) removal of other redundant action nodes (i.e., those action
nodes supporting only the precondition nodea ahd, recursively, the activation nodes supporting a precondition node of a removable action).

For example, the action nodg of Figure 3 is harmful for leve8, because of the unsupported precondition
nodep; of as; a; is harmful for level 3, because it breaks the no-op propagatign af levell, that would support
the precondition nodg; at level3. Notice thata; is an harmful action node for levé| but it is also an helpful
action node for leve because it supports the precondition npgle

We can identify the activation sets of a derived precondition nbde a levell by using the two mutually
recursive algorithms described in Figure 4. These algorithms perform a complete backward search on the rule
graph. And-Search visits anAND-noden of the rule graph and returns: @lsg if n is a node already visited on
the path from the root search treertdn € PathNodeys and hence the search is pruned to avoid looping{(ii)
if n represents a fact that is entailed 8{/) U D(S(l), R); (iii) n, if the previous cases do not apply, ands a
basic fact (that will belong to the activation set under construction)fdlgg otherwise { together with its sibling
AND-nodes have already been visited).

Or-Search visits anor-node of the rule graph, and incrementally updates the set of activation sets, which are
stored in the global variable (initially set to the empty set).

For example, providing that defines the state described in FigureAhd-Search(above(A,C) , 0, 0, 0, s)
searches in the portion of rule graph of Figure 2, and identifies the set of possible activatiorabetse@,C)
¥ = {{on(AB) }, {on(A,C) },{on(A,D) ,on(D,C) }, {on(A,D) ,on(D,B) ,on(B,C) }}.

Note that, the maximum size &f depends on the planning problem and on the search states visited during the
search process. In the worst case, the si2é cdin be exponential in the numbeof the problem objects involved
by the grounded rules. However, in practice, for all problems we tested from the IPC-4, the number of activation
sets is less thah2-n?2.

4 Local Search in the Space of RA-Graphs

In this section, first we give some background on the stochastic local search procedure used in our approach; then
we present new search heuristics for RA-graphs and a method for restricting the search neighborhood.

4.1 Search Procedure and Basic Neighborhood

Each basic search step identifies tieéghborhoodV (I, .A) of the current RA-grap for the earliest flawed level
l,i.e., the set of the RA-graphs obtained frohiby adding a helpful action node féror removing a harmful action
node. The elements of the neighborhood are weighed accordindhtugistic evaluation functioastimating their
quality, and an element with the best quality is then considered as the next possible RA-graph.

The quality of a RA-graph depends on the number of the flaws it contains, the estimated number of the search
steps required to remove them (tbearch co9t and the overalexecution or temporal cogtlepending on the
specified plan metric) of the represented plan. In this paper, we focus on the search cost.

The search strategy used by LPG-tdAialkplan, a method similar to the well-knowwalksat procedure for
solving propositional satisfiability problems [16]. AccordingwW@lkplan, the best element in the neighborhood
is the RA-graph which has tHewest decrease of qualityith respect to the current RA-graph, i.e., it does not
consider possible improvements.

Walkplan uses anoise parametep to randomize the search. Given a RA-grapland a flawed levdl, if there
is a modification aimed at repairirighat does not decrease the quality4fthen the corresponding RA-graph is
chosen as the next search state. Otherwise, with probapibtye of the graphs iV (I, .A) is chosen randomly,
and with probabilityl — p the next RA-graph is chosen according to the minimum value of the evaluation function.

In addition to the use of the noise parameter, in order to escape local minima, the new version of our planner uses
a shorttabu listensuring that the last five search states (RA-graphs) are different.

4.2 Search Heuristics based on Relaxed Plans

In [8, 9], we presented some heuristic evaluation functions implemented in the previous version of our planner. In
this section, we introduce a new heuristic functidf) for RA-graphs. The main differences with respect to the
previous functions are:

e F gives a more accurate estimate of the search cost by taking accalhthaf flaws at a given level of the
graph, instead of only one flaw;

e F estimates the search cost for supporting derived preconditions (derived nodes), which are not handled by
the previous functions.

EvalAdd(a, 1)

Input An action node: that does not belong td and the earliest flawed level of;
Output A set of actions forming a relaxed plan.

I — SR(l,); G« Unsup(l);

Rplan <« RelaxedPlan(Pre(a), I,0);

A — Rplan U{a}; I « I — Threats(a) U Add(a);
Rplan «— RelaxedPlan(G U Threats(a), I, A);
return Rplan.

agrwbdE

EvalDel(a, 1)
Input An action node: that does not belong td and the earliest flawed level of;
Output A set of actions forming a relaxed plan.

I+ S%(l,); G« UnsupDel(l);
Rplan «— RelaxedPlan(Sup(a), I, 0);
if (la <) then

Rplan «— RelaxedPlan(G, I, Rplan);
return Rplan.

grwbdPE

Figure 5: Algorithms for estimating the search cost of adding/removing an helpful/harmful action node for the
earliest flawed levdl of the current RA-grapt.

The first of these differences is an attempt to relax the “flaw-independence assumption” of the previous func-
tions, which in some domains is invalid, and can mislead the search cost evaluation.

The general idea for estimating the search cost of making a ldlebless is to construct a relaxed plan
for the set of facts represented by the unsupported precondition nodleSappose that we are evaluating the
RA-graph obtained by adding an action nadebecause it is helpful for in the current RA-grapbd. E uses a
relaxed planr to compute an estimate of a minimal set of new action nodes required to support

(1) the unsupported precondition nodesiof
(2) the flaws remaining dtafter adding: to A, and

(3) the supported precondition nodes of other action node4 that would becomeinsupported by
addinga.

The larger such a set is, the higher is the estimated search cost. In the folldwit{g, denotes the set
of facts corresponding to the flaws of (Iynsup(!) denotes the sets of facts corresponding to the flaws of (2),
andThreatga) denotes the set of facts corresponding to the flaws of (3). Moreover, we will use some additional
notation: Add(a) is the set of the positive effects of the action represented, by is the level of the node in
the RA-graphy), denotes the fact represented by the fact npdandb/—¢ indicates that action nodehas a
precondition node representing the fgctvhich is supported by action node

The next definition states more precisely when a fact belongbreatga).

Definition 9 Given an action node in a RA-graphA, a fact f is threatened by a iff the no-op off anda are
mutex, and:

e there exist (i) two action nodésc € A such thaty/ ¢, [, < I, < [., and (ii) no action node’ € A such
that f € Add(d') andl, < 1, <., Or

e there exist (i) a derived precondition noges A such that, > 1., S(I,) ET ¥, S(I,) — {f} E® ¥,, and
(i) no action nodex’ such thatf € Add(a’) andl, <l < lp.8

Let SE(1) indicate the stat§(1)UD(S(1), R), whereR is the set of the domain rules. The relaxed plan consists
of two subplans: one foPre(a), and one forUnsup(l) and Threats(a). The initial state of the first subplan is
S%(1,), while the initial state of the second &7 (1,) modified by the effects af. Moreover, the second subplan
can reuse the actions of the first.

The evaluation of an RA-graph in the search neighborhood that is derivieaitnvingan harmful action node
a is similar. E' uses a relaxed planto estimate a minimal set of new action nodes required to support

8We use a definition of mutex relation between an action and a no-op which is slightly weaker than the one given by Fox and Long: the
no-op of f and an action with positive effegtare not mutex.

RelaxedPlan(G, I, A)

Input A set of goal facts@), an initial state for the relaxed plaf)(a set of reusable actiond).
Output The set of actionglcts forming a relaxed plan fo& from I.

G— G-I, Acts +— A;
F— UaEActs Add(a’)’
F—FUD{UF,R);
while G — F # (
if g is a basic factirG — F then
b «— BestAction(g);
Rplan < RelaxedPlan(Pre(b), I, Acts);
Acts — Aset(Rplan) U {b};
. F— UaGActs Add(a)’
10 F—FUD(IUF,R);
11. elsel* gis a derived fact */
12. ¥ «— @; /[* X is a set of activation sets */
13. And-Search(g,0,0,0,1 U F); [*UpdateX */
14. H < BestActivationSet(X);
15. G—G-{gtU{H};
16.return Acts.

CoNOURrWDN R

Figure 6: Algorithm for computing a relaxed plan achieving a set of action preconditions from the initial.state

(1) the precondition nodes supported dypossibly through no-op propagation of its effects and auto-
matic rule activation) that would becomesupported by removing;

(2) whenl, precedes the flawed levelunder reparation, the unsupported precondition nodes atllevel
that do not become supported by removing

We denote the set of facts corresponding to the precondition nodes of (1pwitla), and the set of facts
corresponding to the preconitions nodes of (2) withsupDel(l).

More formally, the heuristic evaluation of the RA-graph obtained by adding a helpful actiorn(dde, /)*)
or by removing a harmful action node(E(a,[)") for a flawed level is defined as follows:

E(a, 1) = |w(a,1)'] + Yo en(any: | Threats(a)|
B(a,)" = [1(a,1)"] + Ygrengany | Threats(a)]

wherer(a,l)* andn(a,l)" are sets of actions forming two relaxed plans, and are computed by the algorithms
EvalAdd(a,) andEvalDel(a,) given in Figure 5, respectively. Such sets are incrementally constructed using the
RelaxedPlan subroutine given in Figure 6.

EvalAdd(a,!) runs RelaxedPlan twice, first with goalsPre(a) (step 2), and then with goal&nsup(l) U
Threats(a) (step 4). EvalDel(a,) runsRelaxedPlan on Sup(a) (step 2) and, if, < I, on UnsupDel(l) (step
4).

RelaxedPlan constructs a relaxed plan through a recursive backward process that can reuse a possibly non-
empty input set of actiond. The action chosen at step 6 to achieveasic(sub)goalg is an actiona’ such that
() g is an effect ofa’; (ii) all preconditions ofa’ are reachable frond; (iii) reachability of the preconditions of
a’ requires a minimum number of actions, estimated as the maximum of the heuristic number of actions required
to support each preconditignof o’ from SZ(1,) (Num_acts(p,1,)); (iv) a’ subverts the minimum number of
supported precondition nodes df

Formally, at step @est Action(g) returns an action satisfying

ARGMIN{ MAX Num_acts(p,l,) + Threats(a')} ,
{a’€Ag} pEPre(a’)—F

whered, = {a’ € Ola € Add(a), O is the set of all actionsyp € Pre(a) Num_acts(p,l,) > 0}; F is the
set of positive effects of the actions currentlyAntsaugmented with the facts derived using the domain ridles
onIU F.1° Num_acts(p,l,) is computed byeachability analysisising a polynomial algorithm similar to the

SWhen we remove, we remove bott and all its precondition nodes. f < [, some precondition nodeslatan remain unsupported.
10The set® does not contain operator instances with mutually exclusive preconditions. In prindiplean be empty becaugemight
not be reachable frold%(l,,) (i.e.,b = 0). RelaxedPlan treats this special case by forcing its termination and returning a set of actions

Planner Solved | Attempted | Success ratio| Planning capabilities at IPC-4
LPG-td 845 1074 79% Propositional + DP, Metric-Temporal +TIL
SGR.AN 1090 1415 7% Propositional + DP, Metric-Temporal +TIL
P-MepP 98 588 17% Propositional, Metric-Temporal +TIL
CRIKEY 364 594 61% Propositional, Metric-Temporal
LPG-pc3 306 594 52% Propositional, Metric-Temporal
DOWNWARD (DIAG) 380 432 88% Propositional + DP
DOWNWARD 360 432 83% Propositional + DP
MARVIN 224 432 52% Propositional + DP
YAHSP 255 279 91% Propositional
MACRO-FF 189 332 57% Propositional
Fap 81 193 42% Propositional
ROADMAPPER 52 186 28% Propositional
TILSAPA 63 166 38% TIL
OpTOP 4 50 8% TIL

Table 1: Number of problems attempted, solved, and success ratio of the planners that took part in the 4th IPC.
“DP” means derived predicates; “TIL" means timed initial literals; “Propositional” mearriPsor ADL. The
planning capabilities are the PDDL2.2 features in the test problems attended by each planner at IPC-4.

one proposed in [8], which for lack of space we omit. The main difference concerns the treatment of the derived
preconditions affecting the reachability information of other basic and derived'facts.
When the (sub)goa} is aderivedfact (step 11)RelaxedPlan computes the sét of the activation sets foy,
and it constructs a relaxed plan for the facts contained ib#stactivation sefd € X (steps 12—14). In particular,
the algorithm usesand-Search to compute> (step 13), and then selects frdina setH such that

e all facts inH are reachable from, and their reachability requires a minimum number of actions;

e the insertion of an action,, to achieve a facta in H threats a minimum number of precondition nodes in
the RA-graph.

More formally, at step 18BestActivationSet(¥) returns an activation set satisfying

ARGMIN {MAX [Num_acts(h, 1)+ Threats(ap)|] } ,
{Hes} heH-F

where

ap = ARGMIN{ MAX Num_acts(p, la)} ,
{a’€An} (p€Pre(a’)

andAj, is defined analogously td, in BestAction(g).

4.3 Neighborhood Restrictions

In general, the effectiveness of a heuristic function evaluating the elements of the search neighborhood can be
significantly affected by the size of the neighborhood. If this is too large, the neighborhood evaluation might
require too much time, and a less accurate (but faster) evaluation function could be more adequate. Since the basic
search neighborhood can be very large, we developed some techniques for restricting it, which are described and
experimentally evaluated in [9]. Here we present a new additional restriction technique for both STRIPS domains
and domains involving derived predicates. We tested this techniques on the IPC-4 benchmark domains, where it
was very effective.

Assume that at the flawed level under consideration we havel@ sétinsupported precondition nodes. For
each derived nodé in U, we choos®neof its activation sets by evaluating each of them ustetaxedPlan with
the activation set as goal set. The selected activation set is one with the best relaxed plan (fewest number of actions
and threats). Moreover, the facts in the selected activation set must not be mutex with the preconditions nodes at
the flawed level under consideration. (If this were the case, the truth of the facts in activation set would make
impossible to support all precondition nodes.at

including a special action with very high execution cost, leading consider the element of the neighborhood under evaluation a bad possible
next search state [8]. For clarity, we omit these details from the description of the algorithm in Figure 6.
1f a (basic or derived) fagt is not reachable, theNum _acts(p, l,) is set to a negative number.

10

Promela-Philosophers-DerivedAdl|

Milliseconds
1e+06 ' T T T T T T T T T T 3
I ® 0°
100000 ".‘, ooO’OO ></><~x></><—><><>é><*></>€><’><>>fé-
i 07 ,><\><><4><'><><></><>: ,.—95%".0@0,’;0;“
j ! o] / ! . i S
P 0T K P24 AR
- - o K X 09 e e |
10000 : ‘, é/gfﬁ‘ixéwoqwowiii? ¥ . e
I ,R\ gﬁg‘z%%éée ’,'.'o‘. ¢
1000 QB8 ot ¢]
I éét?&og » * '..\o'.
w0 F * 4 ° LPG-td (48 solved) - -# - -
..% ®e Downward (48 solved) ---<---
o Downward (Diagonally) (48 solved) ---x---
I Marvin (30 solved) ---o---
10 1 1 1 1 1 1 1 1 1 1 1

0 4 8 12 16 20 24 28 32 36 40 44 48

Milliseconds PSR—MiddIe—DerivedStripS

1e+06 | ' ' ' b
100000 F
10000

1000

100 ¢

LPG-td (50 solved) ----e---

ISG.PIamI(SO so!ved) - 1

10 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 7: Performance of LPG-td and some IPC-4 planners in two benchmark domains involving derived predi-
cates. On the x-axis we have the problem names (abbreviated by numbers). On the y-axis, we have CPU-time (log
scale).

Then, we consider the union of all selected activation sets (one forddadii) and the set of facts correspond-
ing to the basic precondition nodes that are not supportédfabm the resulting set of facts, we choose one
elementt and we restrict the neighborhodd(l, .4) of the current RA-graptd to contain only the RA-graphs of
N without the action node atand the RA-graphs with a new action node supportirag!.

In order to choosé from K, we use a strategy similar to the “least-commitment flaw-selection” strategy
in partial-order causal link planning [15) is the fact that can be supported by the fewest number of graph
modifications ta4 (either inserting of a helpful action or removal of a harmful action).

5 Experimental Results

The technigues presented in this paper have been implemented in the LPG-td planner, which took part in the fourth
International Planning Competition (IPC-4) obtaining the 2nd prize in the suboptimal metric-temporal track, and
showing good performance in the suboptimal propositional tréchk this section, we present some experimental
results illustrating the performance of LPG-td using the test problems of the #l®Q#ese problems belong to

12The system is available frofuttp://lpg.ing.unibs.it .
13l tests were conducted on the competition machine, an Intel Xeon(tm) 3 GHz 1 Gbytes of RAM. The CPU-time limit for each test was
30 minutes. We ran LPG-td with the same default settings for every problem attempted.

11

Milliseconds Airport-Strips

16406 | - - LPG-td (45 solved) 2 4
[--—-<--- Downward (50 solved) I |

—+— SGPlan (44 solved) 4 L
~--4--- YAHSP (36 solved) i i 3
100000 F Y >
L yeo <

600000
10000 | i e
1000 | A .
100 E
o |
10 P S T T S R T S S S S S S S S S S R S S S A S S S S S S S S S A S S T S S S

MNHNO S LO—HMNNON LD T OMN 0O OO TMLN W AN 00—HO T MALN O MO T NLON 0O
OOOHOOHHATHOO OO =N —=ANMANNNNONNMNNANTOMNMNNONOMNSTOT I IO

Milliseconds PSR-Small

- LPG-td (49 solved)

16407 b ---¢—-- Downward (50 solved)]
—+— SGPlan (47 solved)]
~-4--- YAHSP (48 solved)

1e+06 F
100000 |
10000

1000 |

100 L

10 6—La—

Figure 8: Performance of LPG-td and the other awarded IPC-4 planners$mhesvariant of two benchmark

domains. On the x-axis we have the problem names (abbreviated by numbers). On the y-axis, we have CPU-time
(log scale).

several domains, and each domain has some variants involving different features of PDDL2.1 or PBDL2.2.

Table 1 gives summary results for all the domain variants of IPC-4. LPG-td and 8Gdte the only planners
supporting all the major features of PDDL2.1 and PDDL2.2. Both planners have a good success ratio (close to
80%). DowNwARD and YAHSP have a success ratio better than LPG-td and SR but they handle only
propositional domains (the first with derived predicates).

SGR.AN attempted more problems than LPG-td because it was tested also on the “compiled version” of the
variants with derived predicates and “timed initial literals” (the new features of PDDE2Mpreover, LPG-td did
not attempt the numerical variant of the two versions offthenela domain and theDL variant ofPSR-large ,
because they use equality in some numerical preconditions or conditional effects, which currently our planner does
not support.

Since our main focus in this paper is planning with derived predicates, we compare LPG-td with the other
IPC-4 planners using some variants of the benchmark domains containing derived pre@ig&t®iddle , and
the two versions oPromela (Philosophers andOptical-Telegraph). We consider only the planners that
used the same formalization of the domains, because we believe that comparing the performance when different
formalizations are used can be misleadifig.

MFor a description and formalization of the IPC-4 benchmark problems and domainshttgeé/ls5-www.cs.uni-
dortmund.de/ ~edelkamp/ipc-4/index.html

15such versions were generated for planners that do not support these features of PDDL2.2, which are supported by LPG-td.

16Most domain variants had both srRIPSVversion and ambL version, which the competitors were free to choose for their tests. In

12

Milliseconds Airport/Strips

16406 |-~~~ LPGd (45 solved) v]
[—v— LPG-IPC3 (21 solved) no]

100000
10000 ¢
1000 ¢

100 ¢

10 I I I I I I I I I
5 10 15 20 25 30 35 40 45 50

Figure 9: Performance of LPG-td and LPi&e3 in the IPC-4 domaiiirport ~ (STRIPSversion). On the x-axis
we have the problem names (abbreviated by numbers), while on the y-axis, we have the CPU-time (log scale).

Figure 7 shows the CPU-time (in logarithmic scale) of the IPC-4 plannePhfasophers andPSR-Middle .
In the first domain, both LPG-td anddWNWARD solve 48 problems, while MRVIN solves 30 problems. LPG-td
is generally faster than the other planners, except for a few problems witesei®ARD performs better than
LPG-td. INPSR-Middle both SGRAN and LPG-td solve all problems, but LPG-td is generally faster.

RegardingOptical-Telegraph with derived predicates, LPG-td did not perform as well asWNWARD,
which solved more problems and was generally faster than LPG-td. We believe that the main reason of this is
related to the particular structure of these benchmark problems (and of their search space), in which LPG-td’s
heuristics are less effective, more than to the method used for representing and managing derived predicates.

Figure 8 gives sample results from IPC-4 in g1R1Psvariant of two test domaing\(rport andPSR-Small).

In these plots the problems on the x-axis are ordered according to their increasing difficulty for LPG-td. Overall,
compared to the IPC-4 top-perform&TRriIPSplanner DDWNWARD, LPG-td is faster in solving most of the prob-
lems. However, DWNWARD performs better in most of the largestport problems, and in some of the largest
PSRproblems. InAirport , SGR.AN performs slightly worse than LPG-td, whilea¥sp performs very well

in several problems, but poorly in some others, and overall solves fewer problems than LPGR8R twverall
SGR.AN and YaAHsP perform similarly to LPG-td.

Concerning plan quality, the results of an analysis of the official results of IPC-4 show that the quality of the
plans produced bypc-td is generally better than the plan quality of the other planners, in terms of both the number
of plan actions and the plan metric in the problem specification. (These results are available in the web page of
LPG http://lpg.ing.unibs.it J)

The summary results of Table 1 show that, the success ratio of ieR&{the version of our planner that
was awarded at the previous competition), is significantly lower than the one of LPG-td. The main reasons of this
improvement are the revised search and neighborhood restriction heuristics that we have presented in this paper.

Figure 9 compares the CPU-time of LPE6c3 and LPG-td for thesTRIPSvariant of ARPORT. LPG-td is
up to two orders of magnitude faster than the previous version of the planner, and solves many more problems.
Finally, we compared LPG-td and LP®€3 also using the benchmark domains of IPC-3, and overall the new
version of the planner was significantly faster (for more details, see the web page of LPG).

6 Conclusions

We have presented some new techniques for planning in domains involving derived predicates, an important feature
supported by the recent PDDL2.2 language.

Our methods extend the “planning through action graphs and local search” approach previously developed and
implemented in the LPG planner by (i) including a rule graph to support a simple form of reasoning about derived
predicates in the search states produced by the plan actions; (ii) augmenting the action graph representation with

Philosophers , LPG-td attempted theDL version, SGPAN thesTRIPsversion; inPSR LPG-td attempted theTRIPSversion, DDWN-
WARD and MARVIN the ADL version.

13

additional nodes and arcs representing (automatically triggered) domain rules; (iii) defining a new search space
formed by such rule-augmented action graphs, (iv) designing new heuristics based on relaxed plans to guide a
local search process, and to restrict the search neighborhood for speeding up the search.

Our technigues are implemented in a new version of LPG, which showed good performance in many bench-
mark problems from IPC-4 and IPC-3. Current and future work includes a more detailed analysis of the empirical
results of IPC-4, the study of further heuristics to improve the search neighborhood evaluation, and more effective
techniques for selecting the best activation set of a derived precondition.

References

[1] Blum, A., and Furst, M. 1997. Fast planning through planning graph analjstificial Intelligence90:281-300.

[2] Barret, A., Christianson, D., Friedman, M., Kwok, C., Golden, K., Penberthy, S., Sun, Y., Weld, D. 1995. UCPOP User’s
Manual.T.R. 93-09-08dThe University of Washington, Computer Science Department.

[3] Chen, Y., Hsu, C,. and Wha, W. 2004. SGPlan: Subgoal Partitioning and Resolution in Plam#ibgtract Booklet of
the competing planners of ICAPS-04

[4] Coles, A., and Smith, A. 2004. Marvin: Macro Actions from Reduced Versions of the Instarfdestract Booklet of the
competing planners of ICAPS-04

[5] Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language for the Classic Part of the 4th International Planning
Competition.T.R. no. 195Institut fur Informatik, Freiburg, Germany.

[6] Fox, M., and Long, D. 2003 PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Dond&itR
20:61-124.

[7] Gerevini, A., and Serina, I. 2002. LPG: A planner based on local search for planning graphs with action dsts. dh
AIPS-02

[8] Gerevini, A., Saetti, A., and Serina, I. 2003. Planning through Stochastic Local Search and Temporal ActionJad&phs.
20:239-290.

[9] Gerevini, A., Saetti, A., and Serina, |. 2004. An Empirical Analysis of Some Heuristic Features for Local Search in LPG.
Proc. of ICAPS-04

[10] Helmert, M. 2004. A Planning Heuristic Based on Causal Graph Anallsis. of ICAPS-04
[11] McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear planningrdn. of AAAI-91

[12] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Velosa, M., Weld, D., and Wilkins, D. 1998. PDDL -
The Planning Domain Definition LanguageR. CVC TR98-003/DCS TR-116&le Center for Computational Vision and
Control

[13] Nguyen, X., and Kambhampati, S. 2001. Reviving partial order planninBrda. of IJCAI-01
[14] Penberthy, J., and Weld, D. 1992. UCPOP: A sound, complete, partial order planner folPAdl. of KR'92

[15] Pollack, M.E. and Joslin, D. and Paolucci, M. Flaw Selection Strategies for Partial-Order PladAif6:223—262.
1997.

[16] Selman, B., Kautz, H., and Cohen, B. 1994. Noise strategies for improving local seaRroclof AAAI-94
[17] Thiebaux, S., Hoffmann, J., and Nebel, B. 2003. In defense of PDDL Axiéree. of IJCAI-03

14

