
An Interactive Environment for Plan Visualization and Generation: InLPG∗

Alfonso E. Gerevini and Alessandro Saetti

Department of Electronics for Automation, University of Brescia, Italy
{gerevini,saetti}@ing.unibs.it

Introduction
In the last years, the field of fully-automated plan generation
has significantly advanced. However, in a real-world appli-
cation it is likely that the plans synthesized by planning sys-
tems are not directly executable without an inspection of the
user, who might require that some changes be performed in
order to make the plan more suitable, robust or more prefer-
able, or to update the problem specification, which could
have evolved during the planning process. Moreover, for
problems that are computationally hard, in order to effec-
tively find a solution, it could be useful that a human inter-
acted with the planner during search to help it.

In the literature, several mixing initiative approaches to
plan generation have been proposed (e.g., (Myers et al.
2003; Veloso, Mulvehill, & Cox 1997)). In this work, we
present a planning environment, called InLPG, supporting
plan visualization and mixed-initiative plan generation, in
which the user interact with the state-of-the-art planner LPG.
The human knowledge and requirements that are interac-
tively handled by InLPG concern some aspects of: the plan
under construction (e.g., the request of particular start times
for some actions or the addition/removal of certain actions),
the planning problem under consideration (e.g., the addi-
tion/removal of a problem goal), and the plan generation
process (e.g., the introduction of landmarks or the modifi-
cation of choices made by the automated search heuristics).

Our system is an implementation of a more general ap-
proach aiming at: (i) providing a framework for domain-
independent plan generation and visualization; (ii) support-
ing human interaction with a planner through some tools for
effective plan visualizations and inspection; (iii) facilitating
the use of planning technology to domain experts that are
not planning experts; (iv) exploiting human advices during
planning in order to help the planner to solve hard problems
or to compute high quality solutions satisfying the user re-
quirements.

Architecture of InLPG
The proposed framework is based on LPG, a well-known ap-
proach to efficient plan generation and adaptation (Fox et al.
2006; Gerevini, Saetti, & Serina 2003; 2008). LPG’s plan
representation is based on linear action graphs (Gerevini,
Saetti, & Serina 2003), which are variants of the well-known
planning graphs. A linear action graph (LA-graph) is a di-
rected acyclic leveled graph alternating between a proposi-

∗InLPG has been developed with the help of some undergradu-
ates. We would like to thank, in particular, Fabrizio Bonfadini.

Application
Front-end

Search State
Monitor

C
om

plete
inform

ation
aboutthe

currentL
A

-graph

m
odified

L
A

-graph

A
n

optionally

ora
selected

flaw

(LPG)

Constraint Graph,

Gaant chart, Etc.

Automated Planner

U
sercom

m
ands

Messages
Socket

Search Process
Editor

the search process

D
om

ain,Problem
,Planning

settings,E
tc.

Graphs monitoring

Monitor
Search Process

Sum
m

ary
inform

ation

neighborhood

aboutthe
currentL

A
-graph

A
search

Domains/Problems

KB

Plans

Input
Module

Plan Editor

Figure 1: A sketch of the main components integrated in our
environment and their interactions.

tion level, i.e., a set of domain propositions, and an action
level, i.e., one ground domain action and a set of special
dummy actions, called “no-ops", each of which propagates a
proposition of the previous level to the next one. If an action
is in the graph, then its preconditions and positive effects
appear in the corresponding proposition levels of the graph.
Moreover, a pair of propositions or actions can be marked
as mutually exclusive at every graph level where the pair ap-
pears. An action graph can represent a non-valid plan for
the problem under consideration, since it may contain some
flaws, i.e., an action with precondition nodes that are not
supported (for a detailed description, see (Gerevini, Saetti,
& Serina 2003)).

LPG uses a stochastic local search process that iteratively
modifies the current graph until there is no flaw or a certain
search limit is exceeded. LPG deals with an unsatisfied pre-
condition by inserting into or removing from the graph a new
or existing action, respectively. Starting from an initial LA-
graph, a local search process transforms it into a LA-graph
representing a valid plan through the iterative application
of some search steps modifying the graph. The high-level
search schema of LPG can be briefly described as follows:



Figure 2: A screenshot of the graphical user interface of InLPG.

1. Set the current LA-graph A to the empty plan;
2. While A contains a flaw or a predefined search step limit

is not exceeded do
3. Select a flaw σ in A;
4. Identify the search neighborhood N(A, σ), i.e.,

the set of graph modifications removing σ from A;
5. Weight the elements of N(A, σ) using a heuristic E;
6. Select an LA-graph A′ in N(A, σ) and set A to A′;
7. Return A.

Our environment includes an open-controllable version of
LPG, i.e., all the decision points of the LPG’s search proce-
dure can be controlled by an external process that, in our
context, is under the control of a “human planner”. In par-
ticular, at each search step an user can select a plan flaw to
repair (step 3), modify the definition of the search neighbor-
hood (step 4), and select a graph modification among those
that generate the elements in the search neighborhood (step
6). The decisions optionally taken by the user overwrites the
decisions taken by the heuristics of LPG.

LPG runs as a separate process, and it communicates with
the rest of the environment through socket messages. The
architecture of InLPG, sketched in Figure 1, consists of five
main components:

• The Input Module, which inputs the files containing the
description of the planning problem under consideration;

• The Search Process Monitor, which monitors the search
process, and, at each search step, displays the information
about the current search state;

• The Search State Monitor, which provides different views
of the current state during the search process;

• The Search State Editor, which provides tools for human
driven changes to the current search state;

• Search Process Editor, which provides tools for human
driven changes to the search process.

Figure 2 shows a screenshot of the user-interface. The
left frame shows the Gantt chart of the plan computed at
the 465th search step. The plan is flawed, because it con-
tains actions that cannot be executed (dark boxes in the Gantt
chart). The quality of the displayed plan is 1498.2. InLPG
can visualise additional information on the LPG’s search
state, such as the linear action graph representing the plan
under construction, a graphical representation of the order-
ing constraints between the actions in the plan, called con-
straint graph, and a graph showing the trend of the problem
resources during the plan execution, called resource graph.
The plots on the right frame of the screenshot of Figure 2
show, for each search step, the number of flaws, the number
of actions, the makespan of the plan constructed at the cor-
responding search step, and, finally, the trend of the quality
of all the solutions computed so far.

Walkthrough Example of an User Interaction
This section illustrates through a simple example how an
user interacts with our environment for inspecting and sup-
porting plan generation and revision in LPG.

The considered planning problem is a small problem in
Trucks domain (Dimopoulos et al. 2006). The problem
concerns moving three packages (package1, package2
and package3) between New York, Washington and Boston
(NY, Wa and Bo, respectively) by one truck (truck1) under



Figure 3: A portion of the screen of the graphical interface showing the LA-graph computed at the 337th search step. Square
nodes are action nodes; elliptical nodes are fact nodes. Dark elliptical nodes are plan flaws (unsatisfied action preconditions).
For lack of space, the label of some nodes is abbreviated. By moving the mouse on a node, a tooltip displays the corresponding
full label. The darkened level is the level of the last change performed by the planning process.

certain constraints. The loading space of each truck is de-
composed into a collection of areas which are organized by
a spatial map imposing an order to their access and usage.
In our simple problem the truck has only two areas (a1 and
a2), and a package can be (un)loaded onto an area a2 of a
truck only if area a1 is free. Moreover, each package must
be delivered to locations by a certain deadline indicated in
the problem specification.

Figure 3 shows a snapshot of a portion of the
screen containing the graphical representation of the LA-
graph computed at the 377th search step, during which
the user has interrupted the search process. Level
1 contains action (load package1 truck1 a2 Wa),
level 2 action (drive truck1 Bo NY), level 3 ac-
tion (unload package1 truck1 a2 NY), level 4 action
(deliver-ontime package1 NY), finally, level 5 con-
tains the special action (“END”), whose preconditions are the
problem goals.

Figure 4 shows an example of the user interface resource
window showing the trend of the fuel of truck1 during the
execution of the plan under consideration. In the initial state
the fuel level of truck1 is 0; at the end of action (drive
truck1 Bo NY) the fuel level decreases from 0 to −7.31,
since this action consumes 7.31 fuel units and the fuel level
is not recharged until the end of the plan. When the line
representing a certain resource crosses the grey area corre-
sponding to the usage of the resource for a certain action,
such an action is not executable in the context of the current
plan. In particular, in Figure 4 action (drive truck1 Bo
NY) is not executable because there is not enough fuel.

The effect nodes of an action that are also precondition
nodes of actions at the next levels of the graph indicate the
reasons why such an action is being planned. For exam-
ple, action (drive truck1 Bo NY) is in the plan because
truck1 must be at New York before package1 is unloaded
from truck1 to New York city (this is the activity rep-
resented by the action node at level 3). The unsupported
precondition nodes of an action are plan flaws indicating

Figure 4: A simple example of the Resource window of the
user interface for the resource (fuel truck1) in the run-
ning example. In the plot on the right, on the x-axis we have
the plan execution time, and on the y-axis the resource level.
The gray area represents the fuel level required by action
(drive truck1 Bo NY) over all its execution.

why such an action is not executable. Action node (drive
truck1 Bo NY) is not executable because the node labeled
(at truck1 Bo) is not supported in the LA-graph.

Then, the user opens the window of the user interface
showing the ordering constraints between the actions in
the LA-graph of Figure 3 (Figure 5). The nodes in Fig-
ure 5 are actions, while edges represent action ordering
constraints. For example, the edge from action (load
package1 truck1 a2 Wa) to action (drive truck1
Bo NY) imposes that in the current plan package1 is loaded
from Washington on area a2 of truck1 before truck1 is
moved from Boston to New York. The edges connecting the
start action (“START”), whose positive effects are the facts
of the problem initial state, to action (deliver-ontime
package1 NY) imposes that package1 must be delivered



Figure 5: A window of the graphical interface containing
the constraint graph, that represents the action ordering con-
straints in the computed LA-graph. The label of the nodes
is abbreviated. By moving the mouse on a node, a tooltip
displays the corresponding full label.

to New York from 300 to 919.7 time units since the begin-
ning of the plan.

Let us assume that, in order to deliver package1 at New
York on time, the user prefers driving truck1 from Wash-
ington to New York instead of driving it through Boston as
currently planned. Hence, the user decides to intervene at
the current search step by using the tools of the search state
editor for revising the current (partial) plan: she clicks the
right mouse button on the box representing action (drive
truck1 Bo NY) in the Gantt chart and, by using the con-
text menu that is activated, she selects the option for remov-
ing such an action from the current plan. Then, she clicks
the right mouse button on the box representing the flawed
node (at truck1 NY) in the modified LA-graph A′, and,
by using the context menu that is activated, she selects the
option for repairing such a flaw. The right frame shown in
Figure 6 is then automatically displayed. This window in-
dicates the possible graph modifications for repairing the
selected flaw, i.e., it shows the search neighborhood of A′

for repairing (at truck1 NY). The search neighborhood
is formed by three graphs obtained from A′ by: (1) remov-
ing action node (unload package1 truck1 a2 NY) at
level 2; (2) adding action node (drive truck1 Wa NY)
at level 2; and (3) adding action node (drive truck1 Bo
NY) at level 2. The flaw repair frame of the user interface
also shows the heuristic values of each graph modification,
i.e., the values of the heuristic evaluation function E ap-
plied to each element in the search neighborhood (see third
column of the table in the right frame of Figure 6). The
lower the heuristic value, the better the corresponding graph
modification is. Note that since the only action support-
ing goal (at truck1 NY) is action (unload package1
truck1 a2 NY), the heuristic value corresponding to re-
moving this action is infinity. The heuristic value of adding
action (drive truck1 Wa NY) is 1.5, and the heuristic
value for adding action (drive truck1 Bo NY) is 2.28.
This indicates that, if the user did not interfere in the choice

Figure 6: Two frames of the user interface containing a por-
tion of the computed LA-graph (left frame) and the search
neighborhood of such a graph for repairing the flaw (at
truck1 NY) at level 2 of the LA-graph (right frame).

of the graph modification for repairing flaw (at truck1
NY), the planner would have re-inserted action (drive
truck1 Bo NY) into A′. On the contrary, the user selects
the element in the search neighborhood corresponding to the
insertion of action (drive truck1 Wa NY) at level 2 of
A′. Therefore, in the resulting plan truck1 is moved to
New York from Washington instead of from Boston.

Since the user also wants that in the final plan truck1 ar-
rives at New York from Washington instead of from Boston,
by using the tools of the search process editor, she modifies
the rest of the search process: she clicks the right mouse but-
ton on the box representing such an action in the new com-
puted graph and, by the context menu that is activated, she
selects the option imposing that the action is never removed
in the rest of the search process. Finally, the user clicks on
the “play” button in the tool bar of the user interface, and the
automatic search process is resumed.

References
Y. Dimopoulos, A. Gerevini, P. Haslum, and A. Saetti. 2006. The
benchmark domains of the deterministic part of ipc-5. In Abstract
Booklet of the competing planners of ICAPS-06,
M. Fox, A. Gerevini, D. Long, and I. Serina. 2006. Plan stability:
Replanning versus plan repair. In Proc. of ICAPS-06.
A. Gerevini, A. Saetti, and I. Serina. 2003. Planning through
Stochastic Local Search and Temporal Action Graphs. JAIR
20:239–290.
A. Gerevini, A. Saetti, and I. Serina. 2008. An approach to effi-
cient planning with numerical fluents and multi-criteria plan qual-
ity. Artificial Intelligence 172(8-9):899–944.
K. Myers, P. Jarvis, M. Tyson and J. Wolverton. 2003. A mixed-
initiative framework for robust plan sketching. In Proc. of ICAPS-
03.
M. Veloso, A. Mulvehill and M. Cox. 1997. Rationale-supported
mixed-initiative case-based planning. In Proc.of IAAI-97.


