
Symbolic Stochastic Focused Dynamic Programming with Decision Diagrams

Florent Teichteil-K önigsbuch and Patrick Fabiani
ONERA-DCSD

2 AvenueÉdouard-Belin
31055 Toulouse, France

(florent.teichteil,patrick.fabiani)@cert.fr

Abstract

We present a stochastic planner based on Markov De-
cision Processes (MDPs) that participates to the prob-
abilistic planning track of the 2006 International Plan-
ning Competition. The planner transforms the PPDDL
problems into factored MDPs that are then solved with
a structured modified value iteration algorithm based on
the safest stochastic path computation from the initial
states to the goal states. First, a state subspace is com-
puted by making all the transitions deterministic. Then,
a step of modified value iteration on the current reach-
able state subspace alternates with a step of reachable
state expansion by following the current policy.

Introduction
Co-located with the 16th International Conference on Auto-
mated Planning and Scheduling, the probabilistic planning
track of the 5th International Planning Competition aims at
evaluating and at motivating research in the field of non-
determinism in planning (Bonet & Givan 2005). In this ar-
ticle, we present a planner based on Markov Decision Pro-
cesses (MDPs) (Puterman 1994) that have become a pop-
ular stochastic framework for planning under uncertainty:
the uncertain effects of actions are modeled in a decision-
theoretic framework.

A MDP (Puterman 1994) is a Markov chain controlled
by an agent. A control strategy associates to each state the
choice of an action, whose result is a stochastic state. The
Markov property means that the probability of arriving in a
particular state after an action only depends on the previous
state of the chain and not on the entire states history. For-
mally it is a tuple〈S,A, T,R〉 whereS is the set of states,
A is the set of actions,T andR are respectively the transi-
tion probabilities and rewards that are functions of the start-
ing state, the ending state and the chosen action. The most
used optimization criterion consists in maximizing the infi-
nite horizon sumE (

∑∞
t=0 β rt) of expected rewardsrt dis-

counted by a factor0 < β < 1 that insures the convergence
of algorithms, but can also be interpreted as a probability of
a system failure (mission end) between two time points.

The optimization of MDPs produces apolicy, i.e. a map
associating an optimal action to each possible state. It is

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

based on dynamic programming and includes two classes of
algorithms : value iteration and policy iteration. The first is
an iteration on the value function associated with each state,
that is to say the expected accumulated reward if we start
from this state. When the iterated value function stabilizes,
the optimal value function is reached and the optimal policy
follows. In the policy iteration scheme, the current policy is
assessed on the infinite horizon and improved locally at each
iteration. The value of a policyπ is solution of the Bellman
equation (Bellman 1957) :

V π(s) =
∑
s′∈S

T (s, π(s), s′) · (R(s, π(s), s′) + β V π(s′))

In the probabilistic track of IPC’06 (Bonet & Givan
2005), no rewards are explicitly associated to transitions be-
tween states. Alternatively, some goal states are defined,
meaning that the planner must produce a policy that aims at
reaching at least one goal state from some possible initial
states. In an MDP framework, this approach is equivalent
to define positive rewards to the transitions that lead to goal
states. As all goal states have the same significance, all re-
wards have the same value.

In this particular case, the policy that maximizes the ac-
cumulated expected rewards is equal to the policy that max-
imizes the probability of reaching the goal state subspaceG.
For a given policyπ, the probabilityPπ to reach at least
one goal state from any state convergences and it satisfies
the following probabilistic dynamic programming equation
(Teichteil-Königsbuch 2005):

Pπ(s) = 1G(s) + 1S\G(s) ·
∑
s′∈S

T (s, π(s), s′) · Pπ(s′)

where1E is the indicator function of a subspaceE ⊂ S.

State space factorization
Our planner uses a compact factored representation of
MDPs based on Algebraic Decision Diagrams (ADDs) (R.I.
Baharet al. 1993) that generalize Binary Decision Diagrams
(BDDs). Our model is based on work by (Hoeyet al. 2000)
to model and optimize MDPs with decision diagrams. Since
the problems of the stochastic planning track of the compe-
tition are given in an extension of the PPDDL 1.0 language



(Younes & Littman 2003), we must translate the PPDDL do-
main and problem definitions into ADDs-based MDP repre-
sentation. We used the CUDD package (Somenzi 1998) to
deal with ADDs and BDDs in the competition.

The factorization of the state space consists in a cross
product involving binary state variables:S = ⊗n

i=1Vi.
These variables are the instantiations of the PPDDL
parametrized predicates for each constant and each object.
It is a compact representation because the states are not enu-
merated in a list, but rather structured by the set of ran-
dom state variables. Such variables enable to process sets
of states, instead of individual states, whenever useful.

The actions are obtained by instantiating all PPDDL
parametrized actions for all constants and objects. For each
action, the transition probability function can be represented
by a Dynamic Bayesian Network (DBN) (Dean & Kanazawa
1989). It encodes the probabilistic effects and rewards ob-
tained on the different values of the variables after the action
has been performed (post-action variables), conditionally to
the possible values of the variables before the action is ap-
plied (pre-action variables).

The factored conditional transition probabilities of the
DBNs can be encoded as ADDs, that internally useun-
primed(pre-action) variables andprimed(post-action) vari-
ables (Hoeyet al. 2000). The action masks, i.e. PPDDL
preconditions, can be encoded as BDDs, since they can be
defined as indicator functions.

Dealing with action similarities
In PPDDL, actions often are similar in the sense that some
parameter instantiations lead to the same preconditions or
effects for two different actions. Therefore, some sub-
diagrams of the ADDs encoding the transitions are the same
over the different actions. In order to memorize only one
time these sub-diagrams, we propose to merge all the tran-
sition ADDs (resp. mask BDDs) of each action in a single
ADD (resp. BDD) namedGlobal Action Diagram. This
requires to define action variables shared by all ADDs and
BDDs: if PPDDL parametrized actions lead tom instanti-
ated actions for all constants and objects, we must introduce
E(log2 m) action binary variables on top of primed and un-
primed state variables (E(k) is the smallest integer bigger or
equal tok). Also, our single transition ADD̃T is defined as:

T̃ =
∑
a∈A

1a · T a

Contrary to work by (Hoeyet al. 2000), our policy en-
coding is no more a list of mask BDDs for each action, but
rather a single mask BDD that represents the state subspace
(unprimed variables) where each action is optimal:

π =
⋃

a∈A
1a · π−1(a)

In the value iteration scheme, the update of the value re-
quires to compute the maximum of the previous computed
value over the actions (Puterman 1994). This can be tedious
and ineffective with action variables because the value of an
action can only be retrieved by a projection on the variables

that encode this action. The value update step would require
as many projection computations as the number of actions,
and each projection would cause the loss of similarities be-
tween actions.

Therefore, we have extended the CUDD package
by a new low-level ADD function that we called
Cudd_addMaximumAbstract , and inspired by
Cudd_addExistAbstract . This new function com-
putes the maximum of all sub-diagrams over the variables
of a given cube. In the case of MDPs, this cube is composed
of the action variables. It recursively calls the built-in
CUDD functionCudd_addMaximum on the sub-diagrams
of each action variable, until all action variables are parsed.

Optimization focused on the goal states
In the problems of the competition, the knowledge of pos-
sible initial states and of goal states enables to restrict the
policy computation to a subspace of the entire state space.
This idea was already used insLAO* , but it only used the
knowledge of initial states. Moreover,sLAO* is based on a
heuristic that is an approximation of the value of states over
the entire state space, that then helps the optimal optimiza-
tion of the value on the states that are reachable from the
initial states. As a consequence,sLAO* requires to initially
visit all the states in the heuristic computation step.

Deterministic reachability analysis
Therefore, we propose to compute a subset of reachable
statesbeforeany approximate or optimal dynamic program-
ming computation, by using the knowledge ofboth initial
and goal states. This initial step is performed by making all
transitions deterministic: in other words, we transform the
Global Action Diagram ADD into a BDD by replacing all
non-zero discriminants by 1. As a result, we can efficiently
propagate the fringe of reachable states from the initial states
until at least one goal state is reached, without memorizing
the actions that lead from the initial states to the goal states.
Moreover, it is known that BDDs are more effective than 1-0
ADDs (R.I. Baharet al. 1993). This forward reachable state
search satisfies the following recursive equation:

1F ′t+1(s′) =
⋃

a∈A

⋃
s∈S

T̃ det(s, a, s′) · 1Ft(s)

whereF is the current subset of (forward) reachable states
andT̃ det is the Global Action Diagram BDD.

This reachable state subset can still be reduced by per-
forming a backtrack search of reachable states from goal
states to initial states inside the forward reachable state sub-
set:

1Bt−1(s) =
⋃

a∈A

⋃
s′∈S

T̃ det(s, a, s′)·1F (s)·1F ′(s′)·1B′t(s′)

whereB is the current subset of (backward) reachable states.

Safest stochastic path policy
After we have generated the initial reachable state subspace
W (= B at the end of the backward deterministic reacha-
bility analysis), we compute the policy that maximizes the



probability of reaching the goal state subspaceG insideW.
We named this policysafest stochastic path policy, since it
maximizes the chance of reaching at least one goal state. In
the probabilistic track of IPC’06, there are no (positive or
negative) rewards so that this policy is the same as the clas-
sical optimal policy of MDPs obtained if each goal state is
rewarded by 1.

In this special case, the maximum probability of reach-
ing the goal state subspace always converges (Teichteil-
Königsbuch 2005). Therefore, contrary to the computation
of the value function in MDPs, this probability does not re-
quire to be pondered by an empirical discount factor at each
iteration (Puterman 1994). The maximum probabilityP of
reachingG insideW is given by:

P t−1(s) = 1G(s) + 1W\G(s)·

max
a∈A

∑
s′∈S

T (s, a, s′) · 1W(s) · 1W′(s′) · P t(s′)

The maximum over the actions is performed by the func-
tion Cudd_addMaximumAbstract that we added to
CUDD (Somenzi 1998) as an extension.

Policy refinement
The previously obtained policy is not guaranteed to be op-
timal over the entire state space since it is only optimized
overW ⊂ S. In order to improve the policy, we alternate
a step of deterministic reachability analysis and a step of
safest stochastic path policy optimization, in a loop that ends
when the policy convergences over the previous reachable
state subspace. The current reachable state subspace is gen-
erated with the same function as the one responsible for the
initial computation of the reachable states, but the fringe of
state expansion is propagated by following the current pol-
icy (and not by applying all possible actions).

The forward reachable state subspace expansion is:

1F ′t+1(s′) =
⋃

a∈A

⋃
s∈S

T̃ det(s, a, s′) · π(a, s) · 1Ft(s)

whereπ is a BDD depending on action variables and on un-
primed state variables. The backward expansion is given by:

1Bt−1(s) =
⋃

a∈A

⋃
s′∈S

T̃ det(s, a, s′) · π(a, s)·

1F (s) · 1F ′(s′) · 1B′t(s′)

Related work
sLAO* (Feng & Hansen 2002) already uses such alterna-
tion of a step of reachable state expansion by following the
current policy and of a step of policy optimization over the
current reachable state subspace. However, there are some
key differences betweensLAO* and our algorithm. First,
sLAO* does not use the knowledge of goal states so that
the state space expansion stops as soon as the new reach-
able states are the same as the previous reachable states in
the high-level loop. Second, for the same reason, the state
space expansion step ofsLAO* does not perform a back-
ward search of reachable states. Third,sLAO* takes into

account general (positive or negative) rewards so that the
policy is updated with the classical discounted dynamic pro-
gramming equation of MDPs. Nevertheless, the latter is not
really a drawback of our algorithm since we can replace
the safest stochastic path policy by a classical MDPs pol-
icy without changing the spirit of our framework. Moreover,
in case of general rewards, the safest stochastic path pol-
icy can be a heuristic to the policy optimized with rewards
(Teichteil-Königsbuch 2005).

Conclusion
We have presentedsfDP (Symbolic Focused Dynamic Pro-
gramming) that participates to the probabilistic track of the
2006 International Planning Competition. Based on Binary
and Algebraic Decision Diagrams, it is a symbolic dynamic
programming algorithm for planning under action uncer-
tainty that focuses the policy on goal states. A step of reach-
able state subspace expansion by following the current pol-
icy alternates with a step of policy optimization over the
current reachable state subspace, in a loop that ends if the
policy stabilizes over the previous reachable state subspace.
We think that the competition is a good forum to improve
our algorithm, to compare it with other approaches, and to
exchange interesting ideas between researchers.

References
Bellman, R. 1957.Dynamic Programming. Princeton, NJ:
Princeton University Press.
Bonet, B., and Givan, R. 2005. 5th international planning
competition: Non-deterministic track call for participation.
Dean, T., and Kanazawa, K. 1989.a model for reasoning
about persistence and causation.Computational Intelligence
5(3): 142–150.
Feng, Z., and Hansen, E. 2002. Symbolic heuristic search
for factored markov decision processes. InProceedings
18th AAAI, 455–460.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 2000.
Optimal and approximate stochastic planning using deci-
sion diagrams. Technical Report TR-2000-05, University
of British Columbia.
Puterman, M. L. 1994.Markov Decision Processes. John
Wiley & Sons, INC.
R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E.
Macii; A. Pardo; and F. Somenzi. 1993. Algebraic De-
cision Diagrams and Their Applications. InIEEE /ACM
International Conference on CAD, 188–191.
Somenzi, F. 1998. Cudd: Cu decision diagram package
release.
Teichteil-Königsbuch, F. 2005.Symbolic and Heuristic Ap-
proach of Planning under Uncertainty. Ph.D. Dissertation,
SUPAERO.
Younes, H. L., and Littman, M. L. 2003. PPDDL 1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects.


