
Paragraph: A Graphplan-based Probabilistic Planner

Iain little
National ICT Australia & Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Introduction
Paragraph is a probabilistic planner that finds contin-
gency plans that maximise the probability of reaching the
goal within a given time horizon. It is capable of finding ei-
ther a cyclic or acyclic solution to a given problem, depend-
ing on how it is configured. These solutions are optimal in
the non-concurrent case, and optimal for a restricted model
of concurrency. The concurrent case is not relevant to this
discussion, and is not further discussed. A detailed descrip-
tion of Paragraph is given in (Little & Thiébaux 2006).

The Graphplan framework (Blum & Furst 1997) is an
approach that has proven to be highly successful for solv-
ing classical planning problems. Extensions of this frame-
work for probabilistic planning have been developed (Blum
& Langford 1999), but either dispense with the techniques
that enable concurrency to be efficiently managed, or are
unable to produce optimal contingency plans. Specifically,
PGraphplan finds optimal (non-concurrent) contingency
plans via dynamic programming, using information prop-
agated backwards through the planning graph to identify
states from which the goal is provably unreachable. This
approach takes advantage of neither the state space compres-
sion inherent in Graphplan’s goal regression search, nor
the pruning power of Graphplan’s mutex reasoning and
nogood learning. TGraphplan is a minor extension of the
original Graphplan algorithm that computes a single path
to the goal with a maximal probability of success; replan-
ning could be applied when a plan’s execution deviates from
this path, but this strategy is not optimal.
Paragraph is an extension of the Graphplan algo-

rithm to probabilistic planning. It enables much of the ex-
isting research into the Graphplan framework to be trans-
fered to the probabilistic setting. Paragraph is a planner
that implements some of this potential, including: a proba-
bilistic planning graph, powerful mutex reasoning, nogood
learning, and a goal regression search. The key to this frame-
work is an efficient method of finding optimal contingency
plans using goal regression. This method is fully compatible
with the Graphplan framework, but is also more generally
applicable.

Algorithm
To extend the Graphplan framework to the probabilistic
setting, it is necessary to extend the planning graph data
structure to account for uncertainty. We do this by introduc-
ing a node for each of an action’s possible outcomes, so that

a2a1

o3 o4

p1 p2

pg p2

o2 o1

p1

o3 o1

a2 a1

p1

a1 a2

p2

o1 o3
o2 o4

t: 0 p1

p2

pg

t: 1 pg

t: 2

Figure 1: An action-outcome-proposition dependency graph
and search space for an example problem.

there are three different types of nodes in the graph: propo-
sition, action, and outcome. Action nodes are then linked
to their respective outcome nodes, and edges representing
effects link outcome nodes to proposition nodes. Each per-
sistence action has a single outcome with a single add effect.
We refer to a persistence action’s outcome as a persistence
outcome. This extension is functionally equivalent to that
described in (Blum & Langford 1999), except that we also
adapt the planning graph’s mutex propagation rules from the
deterministic setting.

The solution extraction step of the Graphplan algo-
rithm relies on a backward search through the structure of
the planning graph. In classical planning, the goal is to find a
subset of action nodes for each level such that the respective
sequence of action sets constitutes a valid trajectory. The
search starts from the final level of the graph, and attempts
to extend partial trajectories one level at a time until a solu-
tion is found.
Paragraph uses this type of goal-regression search with

an explicit representation of the expanded search space. This
search is applied exhaustively, to find all trajectories that the
Graphplan algorithm can find. An optimal contingency
plan is formed by linking these trajectories together. This
requires some additional computation, and involves using
forward simulation through the search space to compute the
possible world states at reachable search nodes.

As observed by Blum and Langford (1999), the difficulty
with combining probabilistic planning with Graphplan-
style regression is in correctly and efficiently combining the
trajectories. Sometimes the trajectories will ‘naturally’ join
together during the regression, which happens when search
nodes share a predecessor through different ‘joint outcomes’
(sets of outcomes) of the same action set.



Unfortunately, the natural joins are not sufficient to find
all contingencies. Consider the problem shown in Fig-
ure 1, which we define as:1 the propositions p1, p2 and pg;
s0 = {p1, p2}; G = {pg}; the actions a1 and a2; and the
outcomes o1 to o4. a1 has precondition p1 and outcomes
{o1, o2}; a2 has precondition p2 and outcomes {o3, o4}.
Both actions always delete their precondition; o1 and o3
both add pg. The optimal plan for this example is to exe-
cute one of the actions; if the first action does not achieve
the goal, then the other action is executed.

The backward search will correctly recognise that exe-
cuting a1–o1 or a2–o3 will achieve the goal, but it fails to
realise that a1–o2, a2–o3 and a2–o4, a1–o1 are also valid
trajectories. The longer trajectories are not discovered be-
cause they contain a ‘redundant’ first step; there is no way
of relating the effect of o2 and the precondition of a2, or the
effect of o4 with the precondition of a1. While these undis-
covered trajectories are not the most desirable execution se-
quences, they are necessary for an optimal contingency plan.
In classical planning, it is actually a good thing that trajec-
tories with this type of redundancy cannot be discovered, as
redundant steps only hinder the search for a single shortest
trajectory. Identifying the missing trajectories requires some
additional computation beyond the goal regression search.
We refer to trajectories that can be found using unadorned
goal regression as natural trajectories.

The solution we have developed is based on constructing
all ‘non-redundant’ contingency plans by linking together
the trajectories that goal regression is able to find. This is
sufficient to find an optimal solution, as there always exists
at least one non-redundant optimal plan. Paragraph com-
bines pairs of trajectories by linking a node in one trajectory
to a node in the other. This can be done when a possible
world state of the earlier node has a resulting world state
that subsumes the goal set of the later node.

A detailed description of Paragraph’s acyclic search
algorithm follows.The first step is to generate a planning
graph from the problem specification. This graph is ex-
panded until all goal propositions are present and not mutex
with each other, or until the graph levels off to prove that
no solution exists. Assuming the former case, a depth-first
goal regression search is performed from a goal node for the
graph’s final level. This search exhaustively finds all natu-
ral trajectories from the initial conditions to the goal. Once
this search has completed, the possible world states for each
trajectory node are computed by forward-propagation from
time 0, and the node/state costs are updated by backward-
propagation from the goal node. Potential trajectory joins
are detected each time a new node is encountered during
the backward search, and each time a new world state is
computed during the forward state propagation. Unless a
termination condition has been met, the planning graph is
then expanded by a single level, and the backward search is
performed from a new goal node that is added to the exist-
ing search space. This alternation between backward search,
state simulation, cost propagation, and graph expansion con-

1This problem was used by Blum and Langford (1999) to il-
lustrate the difficulty of using goal-regression for probabilistic
planning, and to explain their preference of a forward search in
PGraphplan.

tinues until a termination condition is met. An optimal con-
tingency plan is then extracted from the search space by
traversing the space in the forward direction using a greedy
selection policy.

Classical planning problems have the property that the
shortest solution to a problem will not visit any given world
state more than once. This is no longer true for probabilis-
tic planning, as previously visited states can unintentionally
be returned to by chance. Because of this, it is common
for probabilistic planners to allow for cyclic solutions. An
overview of the algorithm for producing such solutions fol-
lows. This method departs further from the Graphplan
algorithm than the acyclic search does: fundamental to the
Graphplan algorithm is a notion of time, which we dis-
pense with for Paragraph’s cyclic search.

The cyclic search does not preserve Graphplan’s alter-
nation between graph expansion and backward search: the
planning graph is expanded until it levels off, and only then
is the backward search performed. As there is no notion
of time, the backward search is constrained only by the in-
formation represented in the final level of the levelled-off
planning graph.

This cyclic search uses either a depth-first or iterative
deepening algorithm. In both cases, the search uses the out-
comes supporting the planning graph’s final level of propo-
sitions when determining a search node’s predecessors. The
same principal is applied to nogood pruning: only the mu-
texes in the final level of the planning graph—those that
are independent of time—can be safely used. An important
consequence of only using universally applicable nogoods is
that any new nogoods learnt from failure nodes are also
universal. Neither search strategy is clearly superior. The
depth-first search is usually preferable when searching the
entire search space, as it is more likely to learn useful no-
goods. A consequence of this is that there is no predictable
order in which the trajectories are discovered. In contrast,
the iterative deepening search will find the shortest trajecto-
ries first, which can be advantageous when only a subset of
the search space might be explored.

References
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
Graphplan framework. In Proc. ECP.
Little, I., and Thiébaux, S. 2006. Concurrent probabilistic plan-
ning in the graphplan framework. In Proc. ICAPS.


