
The Factored Policy Gradient planner (IPC-06 Version)

Olivier Buffet and Douglas Aberdeen
National ICT Australia & The Australian National University

Canberra, Australia
firstname.lastname@nicta.com.au

Abstract

We present the Factored Policy Gradient (FPG) plan-
ner: a probabilistic temporal planner designed to scale
to large planning domains by applying two significant
approximations. Firstly, we use a “direct” policy search
in the sense that we attempt to directly optimise a pa-
rameterised plan using gradient ascent. Secondly, the
policy is factored into a per action mapping from a par-
tial observation to the probabilility of executing, reflect-
ing how desirable each action is. These two approxi-
mations — plus memory use that is independent of the
number of states — allow us to scale to significantly
larger planning domains than were previously feasible.
Unlike other probabilistic temporal planners, FPG can
attempt to optimisebothmakespan and the probability
of reaching the goal. The version of FPG used in the
IPC-06 competition optimises the makespan only, and
turns off concurrent planning.

Introduction
To date, only a few planning tools have attempted to han-
dle general probabilistic temporal planning domains. These
tools have only been able to produce good or optimal poli-
cies for relatively small or easy problems. We designed the
Factored Policy Gradient (FPG) planner with the goal of cre-
ating tools that produce good policies in real-world domains
rather than perfect policies in toy domains. We achieve this
by: 1) using gradient ascent for direct policy search; 2) fac-
toring the policy into simple approximate policies for start-
ing each action; 3) presenting each policy with critical ob-
servations instead of the entire state (implicitly aggregating
similar states); and 4) using Monte-Carlo style algorithms
with memory requirements that are independent of the state
space size.

The AI planning community is familiar with the value-
estimation class of reinforcement learning (RL) algorithms,
such as RTDP (Barto, Bradtke, & Singh 1995), and ar-
guably AO*. These algorithms represent probabilistic plan-
ning problems as a state space and estimate the long-term
value, utility, or cost of choosing each action from each
state (Mausam & Weld 2005; Little, Aberdeen, & Thiébaux
2005). The fundamental disadvantage of such algorithms is
the need to estimate the values of a huge number of state-
action pairs. Even algorithms that prune most states still fail

to scale due to the exponential increase of relevant states as
the domains grow.

On the other hand, the FPG planner borrows from Policy-
Gradient reinforcement learning. This class of algorithms
does not estimate planning state-action values. Instead,
policy-gradient RL algorithms estimate the gradient of the
unique long-term average reward of the process. In the con-
text of stochastic shortest path problems, such as the IPC-06
domains, we can view this as estimating the gradient of long-
term value of only the initial state. Gradients are computed
with respect to the parameters governing the choice of ac-
tions at each decision point. These parameters summarise
the policy, or plan, of the system. Stepping the parameters
in the direction given by the gradient increases the expected
return, or value from the initial state. Specifically, we will
use the OLPOMDP policy-gradient RL algorithm described
by Baxter, Bartlett, & Weaver (2001).

The policy takes the form of a parameterised function that
accepts a description of the planning state as input, and re-
turns a probability distribution over legal actions. In our
temporal planning setting, anaction is defined as a single
groundeddurative-action (in the PDDL 2.1 sense).

We factor the parameterised policy by using a function
approximator for each action. Only when an action’s pre-
conditions are satisfied do we evaluate the desirability (as a
probability of executing at this decision point) of the action.
By doing this, the number of policy parameters grows lin-
early with the number of actions and predicates. Our param-
eterised action policy is a simple multi-layer perceptron that
takes the truth value of the predicates at the current planning
state, and outputs a probability distribution over whether to
start the action. We require that the truth value of the pred-
icates be a good (but not necessarily complete) indicator of
the total state of the plan so far.

Background

Input Language

FPG’s input language is the complete language handled by
mdpsim , i.e., PDDL with some minor extensions (Younes
& Littman 2004; Youneset al. 2005). Indeed, FPG is us-
ing mdpsim’s data structures and functions to implement the
planning domain simulator.

POMDP Formulation of Planning
We deliberately use factored policies that only consider par-
tial state information. Policy gradient methods still converge
under partial observability, but their value-based counter-
parts may not (Singh, Jaakkola, & Jordan 1994).

A finite partially observable Markov decision process
consists of: a finite set of statess ∈ S; a finite set of actions
a ∈ A; probabilitiesP[s′|s, a] of making state transition
s → s′ under actiona; a reward for each stater(s) : S → R;
and a finite set of observation vectorso ∈ O seen by action
policies in lieu of complete state descriptions. FPG draws
observations deterministically given the state, but more gen-
erally observations may be stochastic.Goal statesoccur
when the predicates match a goal state specification. From
failure statesit is impossible to reach a goal state, usually
because time or resources have run out. These two classes of
state combine to form the set ofterminalstates that produce
an immediate reset to the initial states0. A single trajectory
through the state space, used to estimate gradients, consists
of concatenated simulated plan executions that reset tos0

when a terminal state is reached.1

Policies are stochastic, mapping observation vectorso to
a probability over actions. For FPG, an actiona is an inte-
ger in [1, N], whereN is the number of available grounded
actions. The probability of actiona is P[a|o,θ], where con-
ditioning onθ reflects the fact that the policy is controlled
by a set of real valued parametersθ ∈ Rp. The maximum
makespan of a plan is limited, ensuring that all stochastic
policies reach reset states in finite time when executed from
s0.

The GPOMDP algorithm maximises the long-term aver-
age reward

R(θ) := lim
T→∞

1
T

Eθ

[
T∑

t=1

r(st)

]
, (1)

where the expectationEθ is over the distribution of state tra-
jectories{s0, s1, . . . } induced byP (θ). In the context of
planning, the instantaneous reward provides the action poli-
cies with a measure of progress toward the goal. Our simple
reward scheme is to setr(s) = 1000 for all statess that rep-
resent the goal state, and 0 for all other states. To maximise
R(θ), goalstates must be reached as frequently as possible.
This has the desired property of simultaneously minimising
plan duration and maximising the probability of reaching the
goal (failure states achieve no reward).

Planning State Space
As already mentionned, this implementation of FPG is us-
ing mdpsim ’s data structures and functions (Youneset al.
2005). Thus, a state includes all true predicates as well as
the value of each function. The observation vector used by
FPG needs to have one entry for each predicate that could be
true at some point. Thus, a first step (once the problem has

1This concatenation trick is simply used to formulate the SSP
planning in the framework used in Baxter, Bartlett, & Weaver
(2001). In practice we can take advantage of the episodic nature
of the problem.

been loaded) is to generate these predicates, which is done
simultaneously whenmdpsim grounds actions.

To estimate gradients we need a plan execution simula-
tor to generate a trajectory through the planning state space.
Here again, FPG’s simple solution is to usemdpsim ’s
next() function, which samples a next states′ given current
states and chosen actiona.

Policy-Gradient Reinforcement Learning
Each actiona determines a stochastic matrixP (a) =
[P[s′|s, a]] of transition probabilities from states to states′

given actiona. The gradient estimator discussed in this pa-
per does not assume explicit knowledge ofP (a) or of the
observation process.

All policies are stochastic, with a probability of choos-
ing action a given states, and parametersθ ∈ Rn of
P[a|o,θ]. During the course of optimisation the policy be-
comes more deterministic. The evolution of the states is
Markovian, governed by an|S| × |S| transition probability
matrixP (θ) = [P[s′|θ, s]] with entries given by

P[s′|θ, s] =
∑
a∈A

P[a|o,θ] P[s′|s, a] . (2)

GPOMDP is an infinite-horizon policy-gradient method to
compute the gradient of thelong-term average reward(1)
with respect the policy parametersθ. In this abstract we give
only the gradient estimator customised for planning. For the
derivation of the gradient estimator, and proofs of conver-
gence, please refer to Baxter, Bartlett, & Weaver (2001).

Policy-Gradient for Planning
The desirability of some eligible actioni in the set of ac-
tions with satisfied preconditionsEt is a real valued(i) com-
puted by a multi-layer perceptron. This preceptron usually
has at most one hidden layer, and its weight vectorθi is
part of the complete vector of parametersθ learned by re-
inforcement. With input vectoro, the perceptron computes
d(i) = fi(ot;θi).

Action at is sampled from a probability distribution ob-
tained by computing a Gibbs2 distribution overd(i)’s of eli-
gible actions as follows:

P[at = i|ot,θ] =
exp(fi(ot;θi))∑

j∈Et
exp(fj(ot;θj))

. (3)

Initially, the parameters are set to small random values
giving a near uniform random policy; encouraging explo-
ration of the action space. Each gradient step typically
moves the parameters closer to a deterministic policy. After
some experimentation we chose an observation vector that
is a binary description of predicates current truth values plus
a constant 1 bit to provide bias to the preceptron.

The observations are simply the truth value of the predi-
cates for the current state.

2Essentially the same as a Boltzmann or soft-max distribution.

Not Eligible
Choice disabled

Current State

Next State

Eligible tasks

Resources
Event queue

Time
Predicates

Action status

Predicates

Resources
Event queue

Time

Eligible actions
Action status

Action N

Action 2

Action 1

ot

at

∆

ot

next(st, at)

P[at = 1|ot, θ1] = 0.9

P[at = N|ot, θN] = 0.1

Fig. 1: Individual action-policies make independent deci-
sions.

The FPG Gradient Estimator
Alg. 1 completes our description of FPG by showing how
to implement OLPOMDP for planning with factored action
policies. The algorithm works by sampling a single long tra-
jectory through the state space: 1) the first state represents
time 0 in the plan; 2) the perceptrons attached to eligible
actions all receive the vector observationot of the current
statest; 3) each network computes the desirability of its
action; 4) a planning action is sampled; 5) the state tran-
sition is sampled; 6) the planner receives the global reward
for the new state action and produces an instantaneous gra-
dientgt = rtet; 7) all parameters are immediately updated
in the direction ofgt.

Algorithm 1 OLPOMDP FPG Gradient Estimator
1: Sets0 to initial state,t = 0, et = [0], init θ0 randomly
2: while R not convergeddo
3: et = βet−1

4: Extract predicate values as observationot of st

5: for Each eligible actioni do
6: Evaluate desirabilityd(i) = fi(ot; θti)
7: Sample actioni with probabilityP[at = i|ot; θt]
8: et = et−1 +∇ log P[at|ot; θt]
9: st+1 = next(st,at)

10: θt+1 = θt + αrtet+1

11: if st+1.isTerminalStatethen st+1 = s0

12: t← t + 1

Because planning is inherently episodic we could alter-
natively setβ = 1 and resetet every time a terminal state
is encountered. However, empirically, settingβ = 0.9 per-
formed better than resettinget.3 The gradient for parame-

3Perhaps becauseβ < 1 can reduce the variance of gradient
estimates, even in the episodic case.

ters not relating to eligible actions is 0. We do not compute
fi(ot;θi) or gradients for actions with unsatisfied precondi-
tions. Line 11 resets to the initial planning state upon en-
countering a terminal state.

Conclusion
FPG diverges from traditional planning approaches in two
key ways: we search for plans directly, using a local op-
timisation procedure (an on-line gradient ascent); and we
simplify the plan representation by factoring the plan into
a function approximator for each action, each of which ob-
serves only a stripped down version of the current state.

The drawback of our approach is that local optimisation,
simplified parameterisations, and reduced observability can
all lead to sub-optimal plans; but this sacrifice is deliberate
in order to achieve scalability through memory use andper
stepcomputation times that grow linearly with the domain.
However, the total number of gradient steps is a function of
themixing timeof the underlying POMDP, which can grow
exponentially with the state variables. How to compute the
mixing time of an arbitrary MDP is an open problem. This
hints at the hardness of assessing in advance the difficulty of
general planning problems.

FPG is a planner with great potential to producegood
policies in large domains, especially considering the version
handling concurrency. Further work will refine our param-
eterised action policies, apply more sophisticated stochastic
gradient ascent methods, and attempt to characterise possi-
ble local minima.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment’s Backing Australia’s Ability program and the Centre
of Excellence program. This project was also funded by the
Australian Defence Science and Technology Organisation.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming.Artificial Intelligence72.

Baxter, J.; Bartlett, P.; and Weaver, L. 2001. Experiments with
infinite-horizon, policy-gradient estimation.JAIR15:351–381.

Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A prob-
abilistic temporal planner. InProc. AAAI’05.

Mausam, and Weld, D. S. 2005. Concurrent probabilistic tem-
poral planning. InProc. International Conference on Automated
Planning and Scheduling. Moneteray, CA: AAAI.

Singh, S.; Jaakkola, T.; and Jordan, M. 1994. Learning without
state-estimation in partially observable Markovian decision pro-
cesses. InProceedings of ICML 1994, number 11.

Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An exten-
sion to PDDL for expressing planning domains with probabilis-
tic effects. Technical Report CMU-CS-04-167, Carnegie Mellon
University.

Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the international planning
competition.Journal of Artificial Intelligence Research24:851–
887.

