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Abstract

Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem as
plan verification itself can take exponential time. We present
two planners for the IPC-5. The first is an optimal com-
plete conformant planner called cf2sat, which transform the
PDDL into a propositional theory, that is later compiled into
normal form called d–DNNF to obtain a new formula that en-
codes all the possible plans. This planner gives good results
on pure conformant problems as emptyroom and sorting-nets,
but fails to scale on problems more close to classical planning
as bomb-in-the-toilet. Although the heavy price of confor-
mant planning cannot be avoided in general, in many cases
conformant plans are verifiable efficiently by means of sim-
ple forms of disjunctive inference. We present a second plan-
ner cf2cs+cf2sat which is a suboptimal conformant plan-
ner that try first to solve a problem by translating it (cf2cs)
into an equivalent classical problem, that is then solved by an
off-the-shelf classical planner. This translation leads to an ef-
ficient but incomplete planner capable of solving non-trivial
problems quickly. The translation accommodates simple ’rea-
soning by cases’ by means of an ’split-and-merge’ strategy. If
cf2cs is not able to solve the problem, cf2cs+cf2sat switch
to cf2sat to ensure completeness. Even thought cf2cs is
incomplete, it deals successfully with simple problems as
bomb-in-the-toilet, and other non-trivial problems as empty-
room.

Introduction
Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman
& Boddy 1996)1. Conformant planning is computationally
harder than classical planning, as even under polynomial
restrictions on plan length, plan verification remains hard
(Turner 2002).

We present two conformant planners based on two strate-
gies combined properly. The first, cf2sat, is an optimal
complete conformant planner that translates the problem
into a logic theory, as in SATPLAN (Kautz & Selman 1996).
A SAT solver call over this theory would result in one of the
possible executions (actions and fluents), which assume a

1We assume that actions are deterministic and all the uncer-
tainty is on the initial state. This assumption does not lead to loss
of expressivity.

particular initial state, but we want to obtain a plan confor-
mant to all the initial states. From this theory we generate
a new one encoding all the possible conformant plans, and
call a SAT solver once to obtain a plan. We obtained good
results running cf2sat on some very complex domains but
failed to scale in more simple problems (Palacios & Geffner
2005).

For this reason we have proposed an incomplete method
for mapping from conformant planning to classical plan-
ning, cf2cs (Palacios & Geffner 2006). This works by do-
ing limited disjunctive reasoning and allow to solve popular
benchmarks like bomb-in-the-toilet, trying to fill the gap left
by cf2sat between pure conformant planning and classical
planning. The second planner, cf2cs+cf2sat, is a subop-
timal complete conformant planning that starts by trying to
solve the problem using cf2cs. If it is not possible, the al-
gorithm switch to cf2sat, which is complete.

In the rest of the report we present with more detail the
conformant2sat planner and the conformant2classical trans-
formation. Later, we comment about their performance and
integration to obtain the presented planners.

Mapping Conformant Planning to SAT
For a conformant planning problem, if the number m of pos-
sible initial states s0 ∈ Init is bounded (e.g., bounded num-
ber of disjunctions of bounded size in the initial situation)
and actions are deterministic, the conformant planning prob-
lem P with a fixed horizon n can be mapped in the SAT
problem over the formula (Palacios & Geffner 2005)∧

s0∈Init

T s0(P, n) (1)

where T (P, n) is the propositional theory that encodes the
problem P with horizon n. T s0(P, n) is T (P, n) with two
modifications: first, fluent literals L0 (L at time 0) are re-
placed by true/false iff L is true/false in the (complete) state
s0, and second, fluent literals Li, i > 0, are replaced by
’fresh’ literals Ls0

i , one for each s0 ∈ Init.
Eq. 1 can be thought as expressing m ’classical planning

problems’, one for each possible initial state s0 ∈ Init, that
are coupled in the sense that they all share the same set of
actions; namely, the action variables are the only variables
shared across the different subtheories T s0(P, n) for s0 ∈
Init.



However, a planner using Eq. 1 naively will not scale. We
have already proposed two approaches to optimal classical
conformant planning based on logical formulations (Pala-
cios et al. 2005; Palacios & Geffner 2005). Both of them
translate the problem into CNF, and obtain a plan by doing
logical operations and search. In cf2sat (Palacios & Geffner
2005) (for conformant2sat) we construct a new proposi-
tional formula:

Tcf (P ) =
∧

s0∈Init

project[ T (P ) | s0 ; Actions ] (2)

by doing logical operations as projection (dual of forgetting)
and conditioning. The project operation allows to safely And
over each theory depending on each initial state. The models
of the formula project[ T (P ) | s0 ; Actions ] are the models
of T (P ) | s0 but looking only at the action variables.

Theorem 1 (Palacios & Geffner, 2005) The models of
Tcf (P ) in (2) are one-to-one correspondence with the
conformant plans for the problem P .

We feed Tcf (P ) into a SAT solver to obtain a plan. Log-
ical operations became feasible by compiling the proposi-
tional theory into d–DNNF (Darwiche 2002), a formal norm
akin to OBDD. The result of compiling a propositional the-
ory φ to d–DNNF is a logical circuit that encodes all the
possible models of φ. Summarizing, the cf2sat algorithm
is:

• The following operations are repeated starting from a
planning horizon N = 0 which is increased by 1 until
a solution is found2.

1. The theory T (P ) is compiled into the d–DNNF theory
Tc(P )

2. From Tc(P ), the transformed theory

Tcf (P ) =
∧

s0∈Init

project[ Tc(P ) | s0 ; Actions ]

is obtained by operations that are linear in time and
space in the size of the DAG representing Tc(P ).

3. The theory Tcf (P ) is converted into CNF and the SAT
solver is called upon it.

The plan obtained can be optimal in terms of the number
of actions if we forbidden the concurrent execution of every
pair of actions. This is known as the sequential setting. If we
allow non-interfering actions to be executed simultaneously,
parallel setting, the total executing time or makespan will be
minimized.

Actually, it is not necessary to do projection and condi-
tioning for every initial state. By compiling the theory T (P )
doing case analysis first on the variables of initial state, we
can obtain each project[ T (P ) | s0 ; Actions ] as a sub-circuit
of Tcf (P ). Therefore, Eq. 2 can be obtained in linear time
over the compiled theory Tcf (P ). Translation from this new
circuit into CNF is done by introducing propositional vari-
ables for each gate and adding clauses to encode the relation
between them.

2A better lower bound can be the length of an optimal classical
plan for one initial state

Compiling uncertainty away:
Conformant to Classical Planning (sometimes)
The main motivation of cf2cs is to narrow the gap between
conformant planning and classical planning by developing
an approach that targets ’simple’ conformant problems ef-
fectively. The approach is not complete but it provides so-
lutions to non-trivial problems. For instance, simple rules
suffice to show that a robot that moves n times to the right
in an empty grid of size n, will necessarily end up in the
rightmost column.

We have proposed to solve some non-trivial conformant
planning problems by translating them intro classical plan-
ning problems (Palacios & Geffner 2006). New problems
are fed into a off-the-shelf classical planner. The translation
is sound as the classical plans are all conformant, but it is
incomplete as the converse does not always hold. The trans-
lation scheme accommodates ’reasoning by cases’ by means
of an ’split-and-merge’ strategy; namely, atoms L/Xi that
represent conditional beliefs ’if Xi then L’ are introduced
in the classical encoding that are then combined by suitable
actions when certain invariants in the plan are verified.

The translation scheme maps a conformant planning prob-
lem P into a classical planning problem K(P ). For each
atom a in P we add to K(P ) new atoms Ka and K¬a. At
time t if Ka ∧ ¬K¬a (resp. ¬Ka ∧ K¬a) holds, then a is
true (resp. false) in all the states of the belief state. The ini-
tial state of K(P ) indicates the atoms that are known to be
true or false in the initial belief state of P . Otherwise it states
that the value of those atoms is unknown: ¬Ka ∧ ¬K¬a.
The goal of P is assumed to be a list of atoms {g1, . . . , gn}.
Therefore, the goal of K(P ) requires all those atoms to be
known: {Kg1, . . . ,Kgn}. This encoding is related to 0-
approximation (Baral & Son 1997). In general, it allow to
capture that after doing some actions, the effect can be un-
sure if the real value of the conditions is not known.

This encoding, so far, does not allow any kind of disjunc-
tive reasoning. We extend the translation further so that the
disjunctions in P are taken into account in a form that is
similar to the Disjunction Elimination inference rule used in
Logic

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , Xn ⊃ L then L (3)

For doing this, we add to K(P ) atoms L/Xi to encode
that L ⊃ Xi holds. For example, if for problem P we have
the disjunction X1∨ · · ·∨Xn in the initial state, and actions
a1, . . . , an with conditional effect A ∧ Xi → L; In K(P )
those actions will have also conditional effect A → L/Xi.
Informally, A → L/Xi can be read as: “If we apply ai when
A is true, we conclude that L is true if Xi is true”3. After ap-
plying every action ai, if some invariants were preserved, we
can conclude L because L/X1∧· · ·∧L/Xn holds. To allow
this conclusion, we add to K(P ) a new action mergeX,L

with conditional effect L/X1 ∧ · · · ∧ L/Xn → KL.
These rules more detailed and other rules can be read in

(Palacios & Geffner 2006). They yield expressivity with-
out sacrificing efficiency, as they manage to accommodate

3It is true if ai does not modify Xi. In general it is more subtle.
More details on (Palacios & Geffner 2006)



non-trivial forms of disjunctive inference in a classical the-
ory without having to carry disjunctions explicitly in the be-
lief state: some disjunctions are represented by atoms like
L/Xi, and others are maintained as invariants enforced by
the resulting encoding.

Theorem 2 (Soundness K(P )) (Palacios & Geffner, 2006)
Any plan that achieves the literal KL in K(P ) is a plan that
achieves L in the conformant problem P .

Results
We ran the optimal planner cf2sat with the Darwiche’s
d–DNNF compiler c2d v2.18 (Darwiche 2004) and the SAT
solver siege_v4, obtaining very good results on problems
as Emptyroom, Cube-Center, Ring And Sorting-Nets. In
general, the compiling step was not the bottleneck. It was
not the case in domains like Bomb-in-the-Toilet, where the
big number of objects lead to huge theories impossible to be
compiled. A middle case was the Ring domain, which lead
to big d–DNNFs but later they were very easy for the SAT
solver.

We also ran the translator cf2cs from conformant to clas-
sical planning on domains where it was able to work, as
Emptyroom, Cube-Center, Bomb-in-the-Toilet, Safe, Grid,
Logistics. Then we solve those new classical instances by
calling the FF (Hoffmann & Nebel 2001) classical planner.
Among the popular benchmarks, there are three domains,
Sorting-Nets, (Incomplete) Blocks, and Ring, which can-
not be handled by this translation scheme. The results were
excellent. We were surprised to obtain in general optimal
plans even though FF is a suboptimal planner. An interest-
ing point is that the instances resulting of cf2cs have actions
with many conditional effects, and many planners available
were not able to deal with these instances.

All the relevant programs were written in C++:

• For cf2sat

– Translator from PDDL to CNF, cconf. It was written
by Blai Bonet in joint work (Palacios et al. 2005).

– Translator from Tcf (P ), in d–DNNF, to CNF.

• For cf2cs

– Translator from a PDDL of conformant problem to a
PDDL of the equivalent classical problem. The parser
was taken from cconf.

Planners for the IPC-5
For the IPC-5, we present two complete planners.

• cf2sat: An optimal parallel conformant planning, using
the d–DNNF compiler c2d v2.20 (Darwiche 2004) and
the SAT solver siege_v4, by Lawrence Ryan, or zChaff
(Moskewicz et al. 2001)4.

4siege v4 was reported to be fast on planning theories (Kautz
2004). Our experiments confirmed that affirmation. Sometimes the
CNFs are too big for siege v4. On these case we try with solve the
instances with zChaff which is slower in general for our theories.

• cf2cs(FF)+cf2sat: A suboptimal conformant planning. It
starts trying to solve the problem with cf2cs(FF). If not
possible to try with cf2cs(FF) or not solution is found,
cf2cs(FF)+cf2sat switch to cf2sat.
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