
COMPLAN : A Conformant Probabilistic Planner ∗

Jinbo Huang
Logic and Computation Program

National ICT Australia
Canberra, ACT 0200 Australia

jinbo.huang@nicta.com.au

Abstract

COMPLAN is a conformant probabilistic planner that finds a
plan with maximum probability of success for a given hori-
zon. The core of the planner is a a depth-first branch-and-
bound search in the plan space. For each potential search
node, an upper bound is computed on the success probability
of the best plans under the node, and the node is pruned if this
upper bound is not greater than the success probability of the
best plan already found. A major source of efficiency for this
algorithm is the efficient computation of these upper bounds,
which is possible by encoding the original planning problem
as a propositional formula and compiling the formula into de-
terministic decomposable negation normal form.

Conformant Probabilistic Planning
Consider theSLIPPERY-GRIPPER domain (Kushmerick,
Hanks, & Weld 1995), where a robot needs to have a block
painted and held in his gripper, while keeping his gripper
clean. The gripper starts out clean, but may be wet, which
may prevent him from holding the block; painting the block,
while certain to succeed, may make his gripper dirty; a dryer
is available to dry the gripper. Given probability distribu-
tions quantifying these uncertainties and a planning horizon,
the robot requires a plan that achieves the goal with maxi-
mum probability.

A probabilistic planning problem can be characterized by
a tuple〈S, I,A,G,n〉 whereS is the set of possible world
states,I is a probability distribution overS quantifying the
uncertainty about the initial state,A is the set of actions, all
of which are assumed to be applicable in every state,G is
the set of goal states, andn is the planning horizon.

To quantify the uncertainty in action effects, each action
a ∈ A is a function that maps each states ∈ S to a prob-
ability distributionPra

s over all statesS. Starting from our
initial belief stateB0, which is equal toI, each actiona ∈ A
taken will bring us to a new belief state with updated proba-
bilities for the world statesS:

Bn(s′) =
∑

s∈S

Bn−1(s) · Pra
s (s′).

A solution to theconformantprobabilistic planning prob-
lem is then a sequence ofn actions, or ann-step plan, lead-

∗This document is based on (Huang 2006).

ing to belief stateBn, such that the sum of the probabilities
assigned byBn to the goal states is maximized.

Propositional Encoding
A probabilistic planning problem can be encoded by a
propositional formula, where a subset of the propositional
variables are labeled with probabilities (Littman 1997).
As an example we consider the encoding ofSLIPPERY-
GRIPPER. The state spaceS of SLIPPERY-GRIPPER can
be encoded by four propositional variables:BP (block-
painted),BH (block-held),GC (gripper-clean),GD (gripper-
dry). Suppose initially the block is not painted and not held,
and the gripper is clean but dry only with probability 0.7.

To encode this initial belief state, we introduce achance
variablep, and label it with the number 0.7. We then write:

¬BP,¬BH, GC,¬p ∨ GD, p ∨ ¬GD.

This five-clause formula has the property that each setting
of variablep will simplify the formula, resulting in a single
world state, whose probability is given by the label ofp (if p
is set totrue), or 1 minus that (ifp is set tofalse).

We now consider the encoding of uncertain action ef-
fects. First we introduce a new set of state variables—
BP′, BH′, GD′, GC′—to encode the states reached after ex-
ecuting an action. There are three actions available:A =
{dry, paint, pickup}. Suppose actiondry dries a wet gripper
with probability 0.8, and does not affect a dry gripper. We
introduce a chance variableq, label it with 0.8, and write:
¬dry∨GD∨¬q∨GD′,¬dry∨GD∨q∨¬GD′,¬dry∨¬GD∨GD′.

We also need a set of clauses, known as aframe axiom,
saying that the other variables are not affected by the action:
¬dry∨ (BP ⇔ BP′),¬dry∨ (BH ⇔ BH′),¬dry∨ (GC ⇔ GC′).

After all actions are encoded, we write the following saying
that exactly one of the three actions will be taken:

dry ∨ paint ∨ pickup,

¬dry ∨ ¬paint,¬dry ∨ ¬pickup,¬paint ∨ ¬pickup.

Finally, our goal that the block be painted and held and the
gripper be clean translates into three unit clauses:

BP′, BH′, GC′.

This completes our propositional encoding of the planning
problem, for horizon 1. The resulting set of clauses∆1 can
be characterized as the conjunction of three components:

∆1 ≡ I(P−1, S0) ∧ A(S0, A0, P0, S1) ∧ G(S1),

whereI(P−1, S0) is a set of clauses over the initial chance
variablesP−1, and the state variablesS0 at time 0, encoding
the initial belief state;A(S0, A0, P0, S1) is a set of clauses
over the state variablesS0, action variablesA0, and chance
variablesP0 at time 0, and state variablesS1 at time 1, en-
coding the action effects; andG(S1) is a set of clauses over
the state variablesS1 at time 1, encoding the goal condition.

From this characterization, an encoding∆n for n-step
planning can be produced in a mechanical way by repeat-
ing the middle component with a new set of variables for
each additional time step, and updating the goal condition:

∆n ≡ I(P−1, S0)∧A(S0, A0, P0, S1)∧A(S1, A1, P1, S2)

∧ . . . ∧ A(Sn−1, An−1, Pn−1, Sn) ∧ G(Sn). (1)

In this encoding, ann-step plan is an instantiationπ of the
action variablesA = A0 ∪A1 ∪ . . . ∪ An−1, aneventuality
is an instantiation of the chance variablesP = P−1 ∪ P0 ∪
. . . ∪ Pn−1, and the probability of an eventuality is given
by multiplying together the label of each chance variable, or
1 minus that, depending on its sign in the instantiation. A
solution to the conformant probabilistic planning problem is
then a planπ∗ such that the sum of the probabilitiesPr(ε)
of all eventualitiesε consistent withπ is maximized:

π∗ = arg max
π

∑

π∧ε∧∆nis consistent

Pr(ε). (2)

Compilation to Deterministic DNNF
COMPLAN exploits the particular structure of probabilistic
planning problems, as characterized by Equation 1, by com-
piling ∆n into deterministic decomposable negation normal
form (deterministic DNNF, or d-DNNF) (Darwiche & Mar-
quis 2002) using the publicly availableC2D compiler (Dar-
wiche 2004; 2005), before the search starts.

Deterministic DNNF A propositional formula is in d-
DNNF if it (i) only uses conjunction, disjunction, and nega-
tion, and negation only appears next to variables; and (ii)
satisfiesdecomposabilityanddeterminism. Decomposabil-
ity requires that conjuncts of any conjunction share no vari-
ables; determinism requires that disjuncts of any disjunction
be pairwise inconsistent. The formula shown in Figure 1, for
example, is in d-DNNF, and is equivalent to the 2-step en-
coding∆2 of SLIPPERY-GRIPPER, after the state variables
S = S0 ∪ S1 ∪ S2 have been existentially quantified.

Recall that existential quantification of a variable is de-
fined as: ∃x.∆ ≡ ∆|x ∨ ∆|x, where∆|x (∆|x) denotes
setting variablex to true (false) in ∆. In these planning
problems, existential quantification of the state variables is
useful because these variables do not appear in Equation 2
and their absence can reduce the size of the problem.

Efficient Plan Assessment Compilation of the planning
problem into d-DNNF provides an efficient method for plan
assessment: The computation of the success probability of
any complete planπ for then-step planning problem∆n,

Pr(π) =
∑

π∧ε∧∆nis consistent

Pr(ε), (3)

or

and

and

¬pt’

and

s’p ¬dry paint ¬pickup ¬r ¬dry’ ¬paint’ pickup’

Figure 1: The 2-stepSLIPPERY-GRIPPERin d-DNNF.

which is necessary for computing Equation 2, can be done in
time linear in the size of a d-DNNF compilation of∃S.∆n,
whereS is the set of the state variables.

The source of this efficiency lies in that the d-DNNF
graph can be viewed as afactorizationof Equation 3, by
regarding the conjunction nodes as multiplications and dis-
junction nodes as summations. Specifically, given the label
Pr(p) of each chance variablep, and a planπ, Pr(π) can
be obtained by a single bottom-up traversal of the d-DNNF
graph, where a value is assigned to each nodeN of the graph
as described in Algorithm 1.

Algorithm 1 Plan Assessment

val(N, π) =

1, if N is a leaf node that
mentions an action variable
and is consistent withπ;

0, if N is a leaf node that
mentions an action variable
and is inconsistent withπ;

Pr(p), if N is a leaf nodep where
p is a chance variable;

1− Pr(p), if N is a leaf node¬p where
p is a chance variable;∏

i

val(Ni, π), if N =

∧
i

Ni;

∑
i

val(Ni, π), if N =
∨

i

Ni.

The value assigned to the root is thenPr(π). For ex-
ample, given the 2-step planpaint-pickup′ for SLIPPERY-
GRIPPER, which is actually a 6-variable instantiation
(¬dry, paint,¬pickup,¬dry′,¬paint′, pickup′), Algorithm 1
run on Figure 1 computes its success probability as 0.7335.

Depth-First Branch-and-Bound
Given a method for plan assessment (Algorithm 1), an opti-
mal conformant plan can be found by a systematic search in
the space of all possible plans.COMPLAN uses a depth-first
branch-and-bound for this purpose, where upper bounds on
values of partial plans are efficiently computed by traversing
the d-DNNF compilation of the planning problem.

Computing Upper Bounds Recall that our goal is to com-
pute Equation 2, which is a sequence of maximizations over
the action variables followed by a sequence of summations
over the chance variables. Note that maximizations com-
mute, and therefore the maximizations over action variables
can be performed in any order. Similarly, the summations
over chance variables can be performed in any order. These

two sequences cannot be swapped or mixed, though, as max-
imization does not commute with summation.

However, if we disregard this constraint and allow the
maximizations and summations to be mixed in any order, it
is not difficult to see that we will get a result thatcannot be
lower than the correct value. The motivation for lifting the
variable ordering constraint is that we can now take advan-
tage of the bounded treewidth of these planning problems
by performing these maximizations and summations on the
compact d-DNNF compilation, and using the results as up-
per bounds to prune a search.

Specifically, Algorithm 2 computes an upper bound on the
success probability of the best completions of a partial plan
π, by a single bottom-up traversal of the d-DNNF graph for
∃S.∆ (note that we are using the same name for the value
function as in Algorithm 1, which can now be regarded as a
special case of Algorithm 2 whereπ is a complete plan).

Algorithm 2 Upper Bound

val(N, π) =

1, if N is a leaf node that
mentions an action variable
and is consistent withπ;

0, if N is a leaf node that
mentions an action variable
and is inconsistent withπ;

Pr(p), if N is a leaf nodep where
p is a chance variable;

1− Pr(p), if N is a leaf node¬p where
p is a chance variable;∏

i

val(Ni, π), if N =
∧

i

Ni;

max
i

val(Ni, π), if N =
∨

i

Ni andN is a

decision node over an action
variable not set byπ;∑

i

val(Ni, π), if N =
∨

i

Ni andN is not

of the above type.

COMPLAN keeps the d-DNNF graphG on the side during
search. For ann-step planning problem, the maximum depth
of the search will ben. At each node of the search tree, an
unused time stepk, 0 ≤ k < n, is chosen (this need not
be in chronological order), and branches are created corre-
sponding to the different actions that can be taken at stepk.
The path from the root to the current node is hence a partial
planπ, and can be pruned ifval(G, π) computed by Algo-
rithm 2 is less than or equal to thelower boundon the value
of an optimal plan. This lower bound is initialized to 0 and
updated whenever a leaf is reached and the corresponding
complete plan has a greater value. When search terminates,
the best plan found together with its value is returned.

Variable Ordering Let a1
k, a2

k, . . . , a
|A|
k be the proposi-

tional action variables for stepk, whereA is the set of ac-
tions. At each node of the search tree, letlb be the current
lower bound on the success probability of an optimal plan,
let π be the partial plan committed to so far, and letk be
some time step that has not been used inπ. We are to select
ak and branch on the possible actions to be taken at stepk.

We consider the following:

hbk = max{bi : bi = val(G, 〈π, ai
k〉), bi > lb}, (4)

where〈π, ai
k〉 denotes the partial planπ extended with one

more actionai
k (andaj

k for all j 6= i, implicitly). This quan-
tity hbk gives the highest value among the upper bounds for
the prospective branches that will not be pruned, and we pro-
pose to select ak such thathbk is minimized.

The intuition is that the minimization ofhbk gives the
tightestupper bound on the value of the partial planπ, and
by selecting stepk as the next branching point, upper bounds
subsequently computed are likely to improve as well.

Value Ordering After a time stepk is selected for branch-
ing, we will explore the unpruned branchesai

k in decreas-
ing order of their upper bounds. The intuition here is that
a branch with a higher upper bound is more likely to con-
tain an optimal solution. Discovery of an optimal solution
immediately gives the tightest lower bound possible for sub-
sequent pruning, and hence its early occurrence is desirable.

Value Elimination In the process of computing Equa-
tion 4 to selectk, some branchesai

k may have been found to
be prunable. Although only onek is ultimately selected,
all such branches can be pruned as they are discovered.
This can be done by assertingai

k (and adding it toπ im-
plicitly) in the d-DNNF graphG for all k and i such that
val(G, 〈π, ai

k〉) ≤ lb. Upper bounds computed after these
assertions will generally improve, because there is now a
smaller chance for the first case of Algorithm 2 to execute.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment’sBacking Australia’s Abilityinitiative, in part through
the Australian Research Council.

References
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Darwiche, A. 2004. New advances in compiling CNF
into decomposable negation normal form. InProceedings
of the 16th European Conference on Artificial Intelligence
(ECAI), 328–332.
Darwiche, A. 2005. TheC2D compiler user manual.
Technical Report D-147, Computer Science Department,
UCLA. http://reasoning.cs.ucla.edu/c2d/.
Huang, J. 2006. Combining knowledge compilation and
search for conformant probabilistic planning. InProceed-
ings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS).
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning.Artificial Intelligence
76(1-2):239–286.
Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. InProceedings of the
14th National Conference on Artificial Intelligence (AAAI),
748–754.

