Kernel Functions for Case-Based Planning

Ivan Serina
Free University of Bozen-Bolzano
Viale Ratisbona, 16
[-39042 Bressanone, Italy

ivan.serina@unibz.it

Technical Report

Abstract

Case-based planning can take advantage of former problem-solving experiences by
storing in a plan library previously generated plans that can be reused to solve similar
planning problems in the future. Although comparative worst-case complexity analyses
of plan generation and reuse techniques reveal that it is not possible to achieve provable
efficiency gain of reuse over generation, we show that the case-based planning approach
can be an effective alternative to plan generation when similar reuse candidates can be
chosen.

In this paper we describe an innovative case-based planning system, called OAKPLAN,
which can efficiently retrieve planning cases from plan libraries containing more than ten
thousand cases, choose heuristically a suitable candidate and adapt it to provide a good
quality solution plan which is similar to the one retrieved from the case library.

Given a planning problem we encode it as a compact graph structure, that we call Plan-
ning Encoding Graph, which gives us a detailed description of the fopology of the plan-
ning problem. By using this graph representation, we examine an approximate retrieval
procedure based on kernel functions that effectively match planning instances, achieving
extremely good performance in standard benchmark domains.

The experimental results point out the effect of the case base size and the importance
of accurate matching functions for global system performance. Overall, we show that
OAKPLAN is competitive with state-of-the-art plan generation systems in terms of num-
ber of problems solved, CPU time, plan difference values and plan quality when cases
similar to the current planning problem are available in the plan library.

Finally when the adaptation phase is concluded and the solution plan is available to
the agents, a new planning case corresponding to the current planning problem and its
solution plan can be either inserted into the plan library or discarded.'

Keywords: Case-Based Planning, Domain-Independent Planning, Case-Based Reasoning,
Heuristic Search for Planning, Kernel Functions.

@ @ © O

"This technical report is an extended version of a paper published on the Arrificial Intelligence Journal: 1.
Serina. Kernel Functions for Case-Based Planning. Artificial Intelligence, 174: 1369 — 1406, 2010.

Contents

=)

o =«

Introduction

Preliminaries

2.1 Many-sorted logic
2.2 Planning formalism L
2.3 Graphs e
2.4 Kernel Functions for Labeled Graphs

Case-Based Planning

3.1 PlanRetrieval
3.1.1 ObjectMatching
3.1.2 Screening Procedure
3.1.3 Kernel Functions for Object Matching

3.2 PlanEvaluationPhase

33 Plan Adaptation
3.3.1 Local Search Techniques for Plan Adaptation

34 PlanRevision e

35 CaseBaseUpdate. e

Experimental Results

4.1 Experimental Settings

4.2 OverallResults
42.1 Matching Functions
422 Object Names Renaming Analysis.
423 Casebasesizeanalysis,

4.3 Matching Functions Similarity Results

4.4 OAKPLAN vs. State of the Art Planners

Related Work on Case-Based Planning
Summary and Future Work

Proofs

Variants

Additional results

O 3 O L

12

15
19
21
26
28
29
33
33

34
34
37
38
41
42
45
49

53

63

70

73

78

1 Introduction

Planning is a process which usually involves the use of a lot of resources. The efficiency of
planning systems can be improved by avoiding repeating the planning effort whenever it is not
strictly necessary. For example this can be done when the specification of the goals undergoes
a variation during plan execution or execution time failures turn up: it is then advisable to
change the existing plan rather than replanning from scratch. One might even think of basing
the whole planning process on the modification of plans, a procedure also known as planning
from second principles [61]. In fact this method does not generate a plan from scratch, but
aims at exploiting the knowledge contained in plans that were generated before. The current
problem instance II is thus employed to search for a plan in a library that, maybe after a number
of changes, might turn out useful to solve II.

In Case-Based Planning (CBP), previously generated plans are stored as cases in memory
and can be reused to solve similar planning problems in the future. CBP can save considerable
time over planning from scratch, thus offering a potential (heuristic) mechanism for handling
intractable problems. Similarly to other Case-Based Reasoning (CBR) systems, CBP is based
on two assumptions on the nature of the world [50]. The first assumption is that the world
is regular: similar problems have similar solutions; as a consequence, solutions for similar
problems are a useful starting point for new problem-solving. The second assumption is that
the types of problems an agent encounters tend to recur; hence future problems are likely to be
similar to current problems.

Different case-based planners differ on how they store cases, how they adapt a solution to a
new problem, whether they use one or more cases for building a new solution or not, etc [76].
From a theoretical point of view, in the worst case, adapting an existing plan to solve a new
problem is not more efficient than a complete regeneration of the plan [61]. Moreover finding a
good reuse candidate in a plan library may be already very expensive, because it leads to more
computational costs than those that can be saved by reusing the candidate. In fact, the retrieval
of a good plan from a library of plans represents a serious bottleneck for plan reuse in domain
independent case-based planning systems. This happens because the problem of defining the
best matching among the objects of two planning problems is NP-hard.

In this paper we present some data structures and new matching functions that efficiently
address the problem of matching planning instances, which is NP-hard in the general case.
These functions lead to a new case-based planner called OAKPLAN (acronym of Object Assignment
Kernel case-based planner), which is competitive with state of the art plan generation systems
when sufficiently similar reuse candidates can be chosen.

Following the formalisation proposed by Liberatore [52], a planning case is a pair (IIy, 7o),
where IIj is a planning problem and 7 is a plan for it, while a plan library is a set of cases
{(I1;, m;)]1 <i <m}. Our approach is based on a compact graph representation which uses
the initial and goal facts in order to define a detailed description of the topology of the plan-
ning problem examined. On the basis of this graph representation we use ideas from different
research areas. In particular a lot of work has been done in molecular biology to analyse effi-
ciently chemical databases which typically contain thousands of molecules encoded as graphs.
Similarly to the RASCAL system [66], we use graph degree sequences [70] in order to filter
out unpromising planning cases and reduce the set C%* = {(II;, 7;)} of cases that have to be
examined accurately up to a suitable number.?

>The RASCAL system uses degree sequences and a rigorous maximum common edge subgraph (MCES) detec-
tion algorithm based on a maximum clique formulation to compute the exact degree and composition of similarity

Then in order to define a matching among the objects of the current planning problem
and those of the selected planning cases we developed an approximate evaluation based on
Kernel functions [71], since an exact matching computation is infeasible from a computational
point of view also for a limited number of candidate cases. Our kernel functions are inspired
by Frohlich et al’s work [26, 27, 25] on kernel functions for molecular structures, where a
kernel function can be thought of as a special similarity measure that can be defined between
arbitrarily structured objects, like vectors, strings, trees or graphs [46, 83].

We use kernel functions to define a matching among the objects of the planning problems
considered and compute a similarity function that allows to choose a set of plans 7;; these plans
are evaluated accurately through a simulated execution that determines the cost of removing the
inconsistencies in the plans. The best plan is then adapted, if needed, in order to be applicable
in the current initial state and solve the current goals; the adaptation phase is based on the
LPG-adapt system [22] which showed excellent performance in many domains. Finally when
the adaptation phase is finished and the solution plan is available to the agents, a new planning
case corresponding to the current planning problem and its solution plan can be inserted into
the library or can be cast off.

Following Nebel & Koehler’s formalisation of matching functions [61], we examine the
problem of defining a match between the objects of the current planning problem and those
of the selected planning cases. Since an exact matching evaluation is infeasible from a com-
putational point of view even for a limited number of candidate cases [61], we develop an
approximate evaluation based on kernel functions [71] to define a match among the objects
of the planning problems considered. Our kernel functions are inspired by Frohlich et al.’s
work [25, 26, 27] on kernel functions for molecular structures, where a kernel function can
be thought of as a special similarity measure that can be defined among arbitrarily structured
objects, like vectors, strings, trees or graphs [46, 83]. The computational attractiveness of ker-
nel methods comes from the fact that they can be applied in high-dimensional feature spaces
without suffering the high cost of explicitly computing the mapped data [71].

In contrast to other CBP approaches that define exact matching functions among the objects
of Il and those of the plan library whose computation requires exponential time [39, 45,
61], our kernel functions can compute in polynomial time an approximate matching function
for each element of the set C%*; this matching function can choose a subset of the candidate
plans efficiently for the successive plan evaluation phase. These plans are evaluated accurately
through a simulated execution that determines the capacity of a plan 7; to solve the current
planning problem. This phase is performed by executing 7; and evaluating the presence of
inconsistencies corresponding to the unsupported preconditions of the actions of 7;; in the
same way the presence of unsupported goals is identified. The best plan is then adapted, if
necessary, in order to be applicable to the current initial state and solve the current goals.
This phase is based on the LPG-adapt system [22] which has shown excellent performance in
many domains. When the adaptation phase is concluded, a new planning case corresponding
to the current planning problem and its solution plan can be inserted into the library or can be
discarded.

OAKPLAN can efficiently retrieve planning cases from plan libraries with more than ten
thousand elements, heuristically choose a suitable candidate, possibly the best one, and adapt
it to provide a good quality solution plan similar to the one retrieved from the case base. We

in chemical databases. Our techniques use degree sequences and an approximate maximum common subgraph
(MCS) detection algorithm based on kernel functions to analyse the cases of huge plan libraries and choose a good
candidate for adaptation.

hope that this work will be able to renew interest in the case-based planning approach. Cur-
rent research in planning has been devoted primarily to generative planning since no effective
retrieval functions were available in the past. To the best of our knowledge this is the first case-
based planner that performs an efficient domain independent objects matching evaluation. We
examine it in comparison with state of the art plan generation systems showing that the case-
based planning approach can be an effective alternative to plan generation when “sufficiently
similar” reuse candidates can be chosen. This is a major improvement on previous approaches
on CBP which can only handle small plan libraries (see section 5) and can hardly be compared
with plan generation systems.

The paper is organised as follows. Section 2 introduces the essential notions required by
the paper. In particular we expose the notion of union of graphs which is fundamental for the
definition of the graphs used by our matching functions and we introduce the basic concepts of
kernel functions. Section 3 presents the main phases of our case-based planner examining the
different steps required by the Retrieval and Evaluation phases in detail. In section 4 a detailed
analysis of the importance of an accurate matching function and of the case base size for the
global system performance is provided. Then we examine the results produced by OAKPLAN
in comparison with four state of the art plan generation systems. Finally, section 6 gives the
conclusions and indicates future work.

2 Preliminaries

In the following we present some notations that will be used in the paper with an analysis of
the computational complexity of the problems considered.

2.1 Many-sorted logic

Many-sorted logic can significantly increase the efficiency of a deductive inference system by
eliminating useless branches of the search space of a domain [15, 16, 85]. In many-sorted logic,
constants and variables are divided into subsets called sorts. A constant ¢ can be associated
with a sort ¢, and denoted by

constant c : t.
A variable z has a sort associated with it, denoted as

varx : t
Functions or predicates are also associated with appropriate sorts. Predicate symbols and func-
tion symbols are only defined on typed arguments. The syntax

p(y ity Ty)
indicates that the predicate symbol p is defined only when its arguments are of sorts %1, ...,¢,
respectively. The syntax

fltyx.oxty) >t
indicates that the function symbol f is defined only when the sort of a result term is ¢t. The
main difference between many-sorted logic and ordinary logic is that the universe of discourse
in many-sorted logic is divided into sorts, or types. These sorts need not to be disjointed
and, in general, form a partial order based on the set inclusion relation. The effect of the sort
machinery is felt primarily in two places: well-sortedness and unification [15]. In particular
well-sortedness requires that all formulae are well sorted, that is, the sort of every constituent
term must match the sort of its argument position.

Well-sortedness: a key notion in many-sorted logic is that all formulae must be well sorted,
that is, the sort of every constituent term must match the sort of its argument position. To
keep the logic simple, here “match” means “being a subsort of”. Therefore, in the inference
process, the sort of every term (variable or non-variable) must be a subsort of its argument
position. Formulae which are not well sorted are ignored by the inference machinery thus
reducing the search space.

Unification: in many-sorted logic, the general unification algorithm in Al is modified so
that every substitution has to obey certain sort restrictions. We write ¢; ¢ t3 when sort ¢; is
a strict subsort of t2. Note that c is transitive. Sorts ¢; and 9 are defined to be compatible if
Jts # @ such that t5 c t1 and t3 c t9. It is defined that sorts of two variables being unified must
be compatible and the sort of a non-variable must be a subsort of the variable that is substituted
for. Consider the case where two variables x; and x2 are being unified, and their sorts are ¢;
and 5 respectively. Sorts ¢ and 2 must be compatible in order to unify ;1 and x2; otherwise,
the unification fails. If ¢; c ¢5 then we can substitute x; for zo (denoted as x1/x2) and similarly
if t5 c t1, we can substitute x5 for x1; otherwise, we must introduce a new variable x3 of sort
ts = t1 N to and make two substitutions: z3/x1 and x3/x2. If ¢ is a constant or functional term,
c: t1 unifies with x : £ iff ¢; C £9 and substitutes ¢ for x. With the property of well sortedness,
many-sorted logic requires either the sort of the former must be a subsort of the latter, or the
two sorts must not be merely disjointed.

These restrictions act as a pruning mechanism of many-sorted logic.

2.2 Planning formalism

Similarly to Bylander’s work [11], we define an instance of propositional planning as:

Definition 1 A propositional STRIPS planning problem is a tuple I1 = (B, Z, G, Op) where:
* B is a finite set of ground atomic propositional formulae;
o T C B is the initial state;
* G C B is the goal specification;

* Op is a finite set of operators, where each operator o € Op has the form o’ = o,,0-
such that

— 0P € B. are the propositional preconditions,
— 04 CB. are the positive postconditions (add list),

— o_ S . are the negative postconditions (delete list)

and o, No_ = @.

We assume that the set of propositions 7. has a particular structure. Let O be a set of fyped
constants ¢;, with the understanding that distinct constants denote distinct objects (correspond-
ing to individual entities following the Conceptual Graphs notation [14]). Let P be a set of
predicate symbols, then B.(O, P) is the set of all ground atomic formulae over this signature.
Note that we use a many-sorted logic formalisation since it can significantly increase the effi-
ciency of a deductive inference system by eliminating useless branches of the search space of
a domain [15, 16, 85]. A fact is an assertion that some individual entities exist and that these
entities are related by some relationships.

A plan 7 is a partially ordered sequence of actions © = (ay,...,am,C), where a; is an
action (completely instantiated operator) of 7 and C defines the ordering relations between the
actions of 7. A linearisation of a partially ordered plan is a total order over the actions of the
plan that is consistent with the existing partial order. In a totally ordered plan 7 = (af, ..., a,,),
a precondition f of a plan action a; is supported if (i) f is added by an earlier action a;
and not deleted by an intervening action aj with j < k < ¢ or (ii) f is true in the initial
state and A a; with k < i s.t. f € del(a},). In a partially ordered plan, a precondition of an
action is possibly supported if there exists a linearisation in which it is supported, while an
action precondition is necessarily supported if it is supported in all linearisations. An action
precondition is necessarily unsupported if it is not possibly supported. A valid plan is a plan
in which all action preconditions are necessarily supported.

The complexity of STRIPS planning problems has been studied extensively in the litera-
ture. Bylander [11] has defined PLANSAT as the decision problem of determining whether an
instance II of propositional STRIPS planning has a solution or not. PLANMIN is defined as
the problem of determining if there exists a solution of length & or less, i.e., it is the decision
problem corresponding to the search problem of generating plans with minimal length. Based
on this framework, he has analysed the computational complexity of a general propositional
planning problem and a number of generalisations and restricted problems. In its most general
form, both PLANSAT and PLANMIN are PSPACE-complete. Severe restrictions on the form
of the operators are necessary to guarantee polynomial time or even NP-completeness [11].

It is important to remark that our approach is more related to the generative case-based
planning approach than to the transformational approach, in that the plan library is only as-
sumed to be used when it is useful in the process of searching for a new plan, and is not
necessarily used to provide a starting point of the search process. If a planning case (I, 7o)
is also known, the current planning problem II cannot become more difficult, as we can sim-
ply disregard the case and find the plan using IT only. Essential to this trivial result is that,
similarly to most modern plan adaptation and case-based planning approaches [3, 36, 79, 80],
we do not enforce plan adaptation to be conservative, in the sense that we do not require to
reuse as much of the starting plan g to solve the new plan. The computational complexity of
plan Reuse and Modification for STRIPS planning problems has been analysed in a number of
papers [11, 12, 48, 52, 61]. While a problem cannot be made more difficult by the presence
of a hint, which corresponds in our context to the solution of a planning case, it may become
easier. Unfortunately the following theorem shows that this is not the case for plan adaptation.

Theorem 1 (see [52]) Deciding whether there exists a plan for a STRIPS instance 11, given
a case (g, 7o), is PSPACE-complete, even if 11y and 11 only differ on one condition of the
initial state.

Moreover empirical analyses show that plan modification for similar planning instances is
somewhat more efficient than plan generation in the average case [10, 22, 35, 36, 61, 77, 80].

2.3 Graphs

Graphs provide a rich means for modelling structured objects and they are widely used in real-
life applications to represent molecules, images, or networks. On a very basic level, a graph
can be defined by a set of entities and a set of connections between these entities. Due to
their universal definition, graphs have found widespread application for many years as tools
for the representation of complex relations. Furthermore, it is often useful to compare objects
represented as graphs to determine the degree of similarity between the objects. More formally:

Definition 2 A labeled graph G is a 3-tuple G = (V, E, \), in which
e V is the set of vertices,
o EcV xV is the set of directed edges or arcs,

* \:VUE - R(L,) is a function assigning labels to vertices and edges;

where L) is a finite set of symbolic labels and 62(L) represents the set of all the multisets on
L. Note that our label function considers multisets of symbolic labels, with the corresponding
operations of union, intersection and join [7], since in our context they are more suitable than
standard sets of symbolic labels in order to compare vertices or edges accurately as described
later. The above definition corresponds to the case of directed graphs; undirected graphs are
obtained if we require for each edge [v1,v2] € E the existence of an edge [ve,v1] € E with
the same label. |G| = |V'| + | E| denotes the size of the graph G, while an empty graph such that
|G| = 0 will be denoted by @. An arc e = [v,u] € E is considered to be directed from v to u;
v is called the source node and w is called the rarget node of the arc; w is said to be a direct
successor of v, v is said to be a direct predecessor of u, while v is said to be adjacent to the
vertex u and vice versa.

Here we present the notion of graph union which is essential for the definition of the graphs
used by our matching functions:

Definition 3 The union of two graphs G1 = (V1, E1,\1) and G2 = (Va, Eo, \2), denoted by
G1U Go, is the graph G = (V, E, \) defined by

e V=V1ul,
e F= E1 @] Eg,
A1(z) if x e (Vi\Vo) v e (E1\E2)
e Mz) =1 Aa(x) if z e (Vo\V1) va e (E2\E1)
AM(z)w Ao (x) otherwise

where w indicates the join, sometimes called sum, of two multisets [7], while \(-) asso-
ciates a multiset of symbolic labels to a vertex or to an edge.

In many applications it is necessary to compare objects represented as graphs and determine
the similarity among these objects. This is often accomplished by using graph matching, or
isomorphism techniques. Graph isomorphism can be formulated as the problem of identifying
a one-to-one correspondence between the vertices of two graphs such that an edge only exists
between two vertices in one graph if an edge exists between the two corresponding vertices in
the other graph. Graph matching can be formulated as the problem involving the maximum
common subgraph (MCS) between the collection of graphs being considered. This is often
referred to as the maximum common substructure problem and denotes the largest substructure
common to the collection of graphs under consideration. More precisely:

Definition 4 Two labeled graphs G = (V, E,\) and G' = (V', E’, \") are isomorphic if there
exists a bijective function f : V — V' such that

s YueV,A(v) = N(f(v)),

* V[vi,va] € E,)\([vl,z@]) =)\'([f(vl),f(vz)])»

o [u,v] € Eifand only if [f(u),f(v)]eE".

We shall say that f is an isomorphism function.

Definition 5 An Induced Subgraph of a graph G = (V,E,\) is a graph S = (V',E', \")
such that

e V'cVand Vv e V', N (v) c A(v),
e E'cEandVeeE', N'(e) < \(e)
e Yo,ueV', [v,u] € E ifand only if [v,u] € E

A graph G is a Common Induced Subgraph (CIS) of graphs G1 and G if G is isomorphic
to induced subgraphs of G; and G3. A common induced subgraph G = (V, E, \) of G and
Gy is called Maximum Common Induced Subgraph (MCIS) if there exists no other common
induced subgraph of G; and G2 with ¥y~ |[A\(v)| greater than G. Similarly, a common induced
subgraph G = (V, E, \) of G1 and Gy is called Maximum Common Edge Subgraph (MCES),
if there exists no other common induced subgraph of G; and Go with ¥ .z |\(e)| greater
than G. Note that, since we are considering multiset labeled graphs, we require a stronger
condition than standard MCIS and MCES for labeled graph, in fact we want to maximise the
total cardinality of the multiset labels of vertices/edges involved instead of the simple number
of vertices/edges.

As it is well known, subgraph isomorphism and MCS between two or among more graphs
are NP-complete problems [28], while it is still an open question if also graph isomorphism
is an NP-complete problem. As a consequence, worst-case time requirements of matching
algorithms increase exponentially with the size of the input graphs, restricting the applicability
of many graph based techniques to very small graphs.

2.4 Kernel Functions for Labeled Graphs

In recent years, a large number of graph matching methods based on different matching para-
digms have been proposed, ranging from the spectral decomposition of graph matrices to the
training of artificial neural networks and from continuous optimisation algorithms to optimal
tree search procedures.

The basic limitation of graph matching is due to the lack of any mathematical structure
in the space of graphs. Kernel machines, a new class of algorithms for pattern analysis and
classification, offer an elegant solution to this problem [71]. The basic idea of kernel machines
is to address a pattern recognition problem in a related vector space instead of the original
pattern space. That is, rather than defining mathematical operations in the space of graphs, all
graphs are mapped into a vector space where these operations are readily available. Obviously,
the difficulty is to find a mapping that preserves the structural similarity of graphs, at least
to a certain extent. In other words, if two graphs are structurally similar, the two vectors
representing these graphs should be similar as well, since the objective is to obtain a vector
space embedding that preserves the characteristics of the original space of graphs.

A key result from the theory underlying kernel machines states that an explicit mapping
from the pattern space into a vector space is not required. Instead, from the definition of a
kernel function it follows that there exists such a vector space embedding and that the kernel
function can be used to extract the information from vectors that is relevant for recognition.
As a matter of fact, the family of kernel machines consists of all the algorithms that can be

Input space X Feature space H Input space X

X — T , Ss x
o © X % o o © N o © X %
X X x o X X x
x o/ - N X
x o © X X X o o d oy X X o SUxox X
x o o o o / x X o o™
X X X X N X
x oo ° X o o o X X x oo o X
x o ° / Xy X X o
x o X , X X o) X
o OO X o KR X o o X
x X X ' X X x o , X X
o ¢ x X ° ! xx X o ¢ X
0 © o x o . x) o x x
; o) .
o0 © X x o o, % x o Cox x
o X o X o X
X ! X °
X g X x X x X
X
X ¢7I -
V
no separating hyperplane a separating hyperplane corresponding separating surface

Figure 1: The kernel approach for classification. Left: non-linearly separable input provided by dots
and crosses. Middle: perfect or approximate linear-separability can be achieved in feature space via the
mapping ¢. Right: linear decision surface in feature space defines a complex decision surface in input
space.

formulated in terms of such a kernel function, including standard methods for pattern analysis
and classification such as principal component analysis and nearest-neighbour classification.
Hence, from the definition of a graph similarity measure, we obtain an implicit embedding of
the entire space of graphs into a vector space.

A kernel function can be thought of as a special similarity measure with well defined math-
ematical properties [71]. Considering the graph formalism, it is possible to define a kernel
function which measures the degree of similarity between two graphs. Each structure could be
represented by means of its similarity to all the other structures in the graph space. Moreover
a kernel function implicitly defines a dot product in some space [71]; i.e., by defining a kernel
function between two graphs we implicitly define a vector representation of them without the
need to explicitly know about it.

From a technical point of view a kernel function is a special similarity measure k : X' x X —
IR between patterns lying in some arbitrary domain &X', which represents a dot product, denoted
by (-,-), in some Hilbert space H [71]; thus, for two arbitrary patterns x,z’ € X it holds that
k(x,2") = (¢(x),d(x’)), where ¢ : X — H is an arbitrary mapping of patterns from the
domain X into the feature space H. In principle the patterns in domain & do not necessarily
have to be vectors; they could be strings, graphs, trees, text documents or other objects. The
vector representation of these objects is then given by the map ¢. Instead of performing the
expensive transformation step explicitly, the kernel can be calculated directly, thus performing
the feature transformation only implicitly: this is known as kernel trick. This means that any
set, whether a linear space or not, that admits a positive definite kernel can be embedded into a
linear space.

More specifically, kernel methods manage non-linear complex tasks making use of linear
methods in a new space. For instance, take into consideration a classification problem with a
training set S = {(u1,91), -, (Un,Yn)}s (ui,y;) € X xY, fori = 1,...,n, where X is an
inner-product space (i.e. le) and Y = {-1,+1}. In this case, the learning phase corresponds
to building a function f € Y% from the training set S by associating a class € Y to a pattern
u € X so that the generalisation error of f is as low as possible.

A functional form for f consists in the hyperplane f(u) = sign({w,u)+b), where sign(-)
refers to the function returning the sign of its argument. The decision function f produces
a prediction that depends on which side of the hyperplane (w,u) + b = 0 the input pattern

10

lies. The individuation of the best hyperplane corresponds to a convex quadratic optimisation
problem in which the solution vector w is a linear combination of the training vectors:
w =Y a;yu;, for some o; € RY, i=1,...,n.
In this way the linear classifier f may be rewritten as

n
f(u) = sign (Z ayi{ug, u) + b)
i=1

As regards complex classification problems, the set of all possible linear decision surfaces
might not be rich enough in order to provide a good classification, independently from the
values of the parameters w € X’ and b € IR (see Figure 1). The aim of the kernel trick is that of
overcoming this limitation by adopting a linear approach to transformed data ¢(u1), . .., ()
rather than raw data. Here ¢ indicates an embedding function from the input space & to
a feature space H, provided with a dot product. This transformation enables us to give an
alternative kernel representation of the data which is equivalent to a mapping into a high-
dimensional space where the two classes of data are more readily separable. The mapping is
achieved through a replacement of the inner product:

(ui, u) = (d(ui), p(u))

and the separating function can be rewritten as:

F(u) = sign (z aai{o(us), 6(w) + b) W

The main idea behind the kernel approach consists in replacing the dot product in the
feature space using a kernel k(u,v) = (¢(v), ¢(u)); the functional form of the mapping ¢(+)
does not actually need to be known since it is implicitly defined by the choice of the kernel. A
positive definite kernel [29] is:

Definition 6 Let X be a set. A symmetric function k : X x X — IR is a positive definite kernel
function on X iff VneIN, Vxi,...,z,€ X, and Vecy,...,cp € IR

E CZ'Cjk‘(ZL‘i,l'j) >0
ije{l,...,n}

where IV is the set of positive integers. For a given set S, = {u1,...,u,}, the matrix K =
(k(ui, u;)); ; is known as Gram matrix of k with respect to S,. Positive definite kernels are
also called Mercer kernels.

Theorem 2 (Mercer’s property [58]) For any positive definite kernel function k € IR**¥,
there exists a mapping ¢ € H?Y into the feature space H equipped with the inner product
(-,)3, such that:

Vu,v € X? k(u,v) = ((ZS(U), ¢(U)>'H

The kernel approach replaces all inner products in Equation 1 and all related expressions
to compute the real coefficients «; and b, by means of a Mercer kernel k. For any input pattern
u, the relating decision function f is given by:

f(u) = sign (i a;iyik(ui,u) + b) (2)

i=1

11

This approach transforms the input patterns uq,...,u, into the corresponding vectors
é(u1),...,¢(u,) € H through the mapping ¢ € HY (cf. Mercer’s property, Theorem 2),
and uses hyperplanes in the feature space H for the purpose of classification (see Figure 1).
The dot product (u,v) = Zle uzv; of IR? is actually a Mercer kernel, while other commonly
used Mercer kernels, like polynomial and Gaussian kernels, generally correspond to nonlinear
mappings ¢ into high-dimensional feature spaces H. On the other hand the Gram matrix im-
plicitly defines the geometry of the embedding space and permits the use of linear techniques
in the feature space so as to derive complex decision surfaces in the input space X.

While it is not always easy to prove positive definiteness for a given kernel, positive definite
kernels are characterised by interesting closure properties. More precisely, they are closed
under sum, direct sum, multiplication by a scalar, tensor product, zero extension, pointwise
limits, and exponentiation [71]. Well-known examples of kernel functions are:

e Radial Basis Functions krpr(z,2") = exp (_”%ﬁl‘?),

e Homogenous polynomial kernels kpoly(z,2") = (z, 2)4 (d e IN);

e Sigmoidal kernels ksig(z,z") = tanh (k(z - z") + 0)
. . . Vi _ 1

e Inv. multiquadratic kernels Einy(x,2") = N

A remarkable contribution to graph kernels is the work on convolution kernels, that pro-
vides a general framework to deal with complex objects consisting of simpler parts [41]. Con-
volution kernels derive the similarity of complex objects from the similarity of their parts.
Given two kernels k1 and ko over the same set of objects, new kernels may be built by using
operations such as convex linear combinations and convolutions. The convolution of k; and ks
is a new kernel £ with the form

ky % ko(u,v) = > k1 (u1,v1) ke (uz, v2)
{ulu2}=u;{vl,v2}=v

where u = {uy,us} refers to a partition of « into two substructures u; and wug [41, 71]. The
kind of substructures depends on the domain of course and could be, for instance, subgraphs
or subsets or substrings in the case of kernels defined over graphs, sets or strings, respec-
tively. Different kernels can be obtained by considering different classes of subgraphs (e.g. di-
rected/undirected, labeled/unlabeled, paths/trees/cycles, deterministic/random walks) and var-
ious ways of listing and counting them [46, 62, 63]. The consideration of space and time com-
plexity so as to compute convolution/spectral kernels is important, owing to the combinatorial
explosion linked to variable-size substructures.

In the following section we present our Optimal Assignment Kernel as a symmetric and
positive definite similarity measure for directed graph structures and it will be used in order to
define the correspondence between the vertices of two directed graphs. For an introduction to
kernel functions related concepts and notation, the reader is referred to Scholkopf and Smola’s
book [71].

3 Case-Based Planning

A case-based planning system solves planning problems by making use of stored plans that
were used to solve analogous problems. CBP is a type of case-based reasoning, which involves
the use of stored experiences (cases); moreover there is strong evidence that people frequently
employ this kind of analogical reasoning [30, 69, 84]. When a CBP system solves a new

12

/ New Initial Facts %
New

Planning

Problem — Similar
Cases

Case
Base
Elements

Case Base

Adapted
Plan

Figure 2: The case-based planning cycle.

Retrieved
Plan

<
uonenfeAy

planning problem, the new plan is added to its case base for potential reuse in the future. Thus
we can say that the system learns from experience.

In general the following steps are executed when a new planning problem must be solved
by a CBP system:

1. Plan Retrieval to retrieve cases from memory that are analogous to the current (farget)
problem (see section 3.1 for a description of our approach).

2. Plan Evaluation to evaluate the new plans by execution, simulated execution, or analysis
and choose one of them (see section 3.2).

3. Plan Adaptation to repair any faults found in the new plan (see section 3.3).

4. Plan Revision to test the solution new plan 7 for success and repair it if a failure occurs
during execution (see section 3.4).

5. Plan Storage to eventually store 7 as a new case in the case base (see section 3.5).

In order to realise the benefits of remembering and reusing past plans, a CBP system needs
efficient methods for retrieving analogous cases and for adapting retrieved plans together with a
case base of sufficient size and coverage to yield useful analogues. The ability of the system to
search in the library for a plan suitable to adaptation® depends both on the efficiency/accuracy
of the implemented retrieval algorithm and on the data structures used to represent the elements
of the case base.

A planning case of the case base corresponds to a planning problem II (defined by an initial
state I, a goal state GG and a set of operators) a solution 7 of 1I and additional data structures
derived by II and stored in the case base so as to avoid their recomputation. The case base
competence should increase progressively during the use of the case base system itself, every
time solution plans enhancing the competence of the case base are produced.

3A plan suitable to adaptation has an adaptation cost that is lower with respect to the other candidates of the
case base and with respect to plan generation.

13

The possibility of solving a large number of problems depends both on the size and on
the competence of the library with respect to the agent activity. Furthermore this competence
could be increased during the agent activity, in fact the solution plans of new problems could
be added to the library.

Similarly to the Aamodt & Plaza’s classic model of the problem solving cycle in CBR
[1], Figure 2 shows the main steps of our case-based planning cycle and the interactions of
the different steps with the case base. In the following we illustrate the main steps of our
case-based planning approach, examining the different implementation choices adopted.

3.1 Plan Retrieval

Although the plan adaptation phase is the central component of a CBP system, the retrieval
phase critically affects the system performance too. As a matter of fact the retrieval time is a
component of the fotal adaptation time and the quality of the retrieved plan is fundamental for
the performance of the successive adaptation phase. With OAKPLAN a number of functions for
the management of the plan library and matching functions for the selection of the candidate
plan for adaptation have been implemented.

The retrieval phase has to consider all the elements of the plan library in order to choose a
good one that will allow the system to solve the new problem easily. Hence it is necessary to
design a similarity metric and reduce the number of cases that must be evaluated accurately so
as to improve the efficiency of the retrieval phase. Anyway the efficiency of a plan adaptation
system is undoubtedly linked to the distance between the problem to solve and the plan to
adapt. In order to find a plan which is useful for adaptation we have to reach the following
objectives:

* The retrieval phase must identify the candidates for adaptation. The retrieval time should
be as small as possible as it will be added to the adaptation time and so particular atten-
tion has been given to the creation of efficient data structures for this phase.

» The selected cases should actually contain the plans that are easier to adapt; since we
assume that the world is regular, i.e. that similar problems have similar solutions, we
look for the cases that are the most similar to the problem to solve (with respect to all the
other candidates of the case base). In this sense, it is important to define a metric able
to give an accurate measure of the similarity between the planning problem to solve and
the cases of the plan library.

To the end of applying the reuse technique, it is necessary to provide a plan library from
which “sufficiently similar” reuse candidates can be chosen. In this case, “sufficiently similar”
means that reuse candidates have a large number of initial and goal facts in common with the
new instance. However, one may also want to consider the reuse candidates that are similar to
the new instance after the objects of the selected candidates have been systematically renamed.
As a matter of fact, every plan reuse system should contain a matching component that tries to
find a mapping between the objects of the reuse candidate and the objects of the new instance
such that the number of common goal facts is maximised and the additional planning effort
to achieve the initial state of the plan library is minimised. Following Nebel & Koehler’s
formalisation [61], we will have a closer look at this matching problem.

14

3.1.1 Object Matching

As previously said we use a many-sorted logic in order to reduce the search space for the
matching process; moreover we assume that the operators are ordinary STRIPS operators using
variables, i.e. we require that if there exists an operator o, mentioning the typed constants
{c1 1 t1,...,cn : t,} € O, then there also exists an operator o; over the arbitrary set of typed
constants {dy : t1,...,dy : t,} € O such that o; becomes identical to oy if the d;’s are replaced
by ¢;’s. If there are two instances

' = (R(0",P),T',¢", Op)
II=(R(0,P),Z,G,0p)
such that (without loss of generality)
0'co
P =P
Op c Op

then a mapping, or matching function, from II' to II is a function
u:0" -0

The mapping is extended to ground atomic formulae and sets of such formulae in the
canonical way, i.e.,

,u(p(cl ftiy ., cn tn)) :p(ﬂ(cl) tt, ...,/L(Cn) : tn)
p({p1(-)s - pm () }) = {pp (), s om ()}

If there exists a bijective matching function g from II’ to IT such that u(G’) = G and
w(I") = I, then it is obvious that a solution plan 7’ for IT’ can be directly reused for solving II
since IT" and IT are identical within a renaming of constant symbols, i.e., u(7") solves II. Even
if ;1 does not match all goal and initial-state facts, p(7") can still be used as a starting point for
the adaptation process that can solve II.

In order to measure the similarity between two objects, it is intuitive and usual to compare
the features which are common to both objects [54]. The Jaccard similarity coefficient used
in information retrieval is particularly interesting. Here we examine an extended version that
considers two pairs of disjoint sets:

(") 0 Gl + () nT]
(G VGl + (") VT

In the following we present a variant of the previous function so as to overcome the prob-
lems related to the presence of irrelevant facts in the initial state description of the current
planning problem II and additional goals that are present in II’. In fact while the irrelevant
facts can be filtered out from the initial state description of the case-based planning problem
IT’ using the corresponding solution plan 7, this is not possible for the initial state description
of the current planning problem II. Similarly, we do not want to consider possible “irrelevant”
additional goals of G’; this could happen when II” solves a more difficult planning problem
with respect to 1I. We define the following similarity function so as to address these issues:

[1(G") NGl +w(IZ") nZ|
|G|+ |1(Z")] '

3)

complete_simil, (II',IT) =

simil, (IT',IT) = (G

15

Using simil, we obtain a value equal to 1 when there exists a mapping p s.t. Vf ¢
I', u(f) € I (to guarantee the applicability of ') and Vg € G, 3¢’ € G' s.t. g = p(g")
(to guarantee the achievement of the goals of the current planning problem). Note that these
similarity functions are not metric functions, although we could define a distance function in
terms of the similarity as Dist, (II',II) = 1 — simil,(II',II). and it easy to show that this
distance function is indeed a metric.

Finally we define the following optimisation problem, which we call obj_match:
Instance: Two planning instances, I1" and II, and a real number k € [0,1].
Question: Does a mapping p from II to II such that simil, (II',II) = k exist and there

is no mapping 4" from IT’ to IT with simal,,/(IT', IT) > k?

It should be noted that this matching problem has to be solved for each potentially relevant
candidate in the plan library to select the corresponding best reuse candidate. Of course, one
may use structuring and indexing techniques to avoid considering all plans in the library. Nev-
ertheless, it seems unavoidable solving this problem a considerable number of times before
an appropriate reuse candidate is identified. For this reason, the efficiency of the matching
component is crucial for the overall system performance. Unfortunately, similarly to Nebel
& Koehler’s analysis [61], it is quite easy to show that this matching problem is an NP-hard
problem.

Theorem 3 ob7j_match is NP-hard.

The proof of this theorem and of the following ones can be found in Appendix A. This NP-
hardness result implies that matching may be indeed a bottleneck for plan reuse systems. As a
matter of fact, it seems to be the case that planning instances with complex goal or initial-state
descriptions may not benefit from plan-reuse techniques because matching and retrieval are
too expensive. In fact existing similarity metrics address the problem heuristically, considering
approximations of it [60, 81]. However, this theorem is interesting because it captures the limit
case for such approximations.

Planning Encoding Graph. We define a particular labeled graph data structure called Plan-
ning Encoding Graph which encodes the initial and goal facts of a single planning problem
II to perform an efficient matching between the objects of a planning case and the objects of
the current planning problem. The vertices of this graph belong to a set Vi whose elements
are the representation of the objects O of the current planning problem II and of the predicate
symbols P of II:
vn=0ulJL,ulJG,
peP qeP

i.e. for each predicate we define two additional nodes, one associated to the corresponding
initial fact predicate called I, and the other associated to the corresponding goal fact predicate
called G;. The labels of this graph are derived from the predicates of our facts and the sorts of
our many-sorted logic. The representation of an entity (an object using planning terminology)
of the application domain is traditionally called a concept in the conceptual graph community
[14]. Following this notation a Planning Encoding Graph is composed of three kinds of nodes:
concept nodes representing entities (objects) that occur in the application domain, initial fact
relation nodes representing relationships that hold between the objects of the initial facts and
goal fact relation nodes representing relationships that hold between the objects of the goal
facts.

16

AIp) ={(Ip, 1)} = {Ip}, Aer) ={(t1, 1)} = {ta}, ..., M(en) = {(tn, 1)} = {tn}

Figure 3: Initial Fact Encoding Graph £ (p) of the propositional initial fact p = p(c; : t1,...,¢n : ty)

Initial fact: (on A B)

AR RyR ey
Initial Fact Encoding Graph: \Z/

Alon) = {Ion}, A(A)={0bj}, A(B)={Obj}

Figure 4: Initial Fact Encoding Graph £/ (on A B) of the propositional initial fact (on A B).

The Planning Encoding Graph of a planning problem II(7,G) is built using the corre-
sponding initial and goal facts. In particular for each propositional initial fact p = p(c; :
t1,...,Cp : ty) € I we define a data structure called Initial Fact Encoding Graph which corre-
sponds to a graph that represents p. More precisely:

Definition 7 Given a propositional typed initial fact p = p(c1 : t1,...,¢n : ty) € I of 11, the
Initial Fact Encoding Graph £/(p) = (V},, Ep, \p) of fact p is a directed labeled graph
where

. Vp = {Ip,cl, ...,Cn} c VH,‘
¢ EP = {[Ipvcl]v [61,62], [01763]7 ceey [Clacn]a [02763]a [62704]3 [RXX) [Cn—lvcn]} =

= [Ipvcl] U U [Ciacj]

i=1,...,n; j=t+1,...,n
e Ap(L) = {I,} Ap(ci) = {t:} withi=1,...n;

* ML) = {7y Ve e) € By, Ap(leei]) = {57}

i.e. the first node of the graph £7(p), see Figure 3, is the initial fact relation node I, » labeled
with the multiset A, (1) = { (I, 1)} = {I,},* it is connected to a direct edge to the second node
of the graph, the concept node ¢;, which is labeled by sort 1 (i.e. Ap(c1) = {(¢1,1)} = {t1});
the node c; is connected with the third node of the graph cy which is labeled by sort to
(i.e. Ap(c2) = {(t2,1)} = {t2}) and with all the remaining concept nodes, the third node of

*In the following we indicate the multiset { (z;,1)} as {x} for sake of simplicity.

17

Initial:

(on—table A), (on—table B)
(on C A), (clear C), (clear B)
(handempty)

.

Goal: |
(onAB), (onBC) |

\‘ \
|),
{I(l)]n]}\ /”
C Lon I clear Ton—tabie Thandem.

A(A) ={(00j,3)}, A(B) = {(Obj,4)} and \(C) = {(Obj,3)}

Figure 5: Planning Encoding Graph for the Sussman Anomaly planning problem in the BlocksWorld
domain.

the graph ¢y is connected with cs, ¢y, ...,c, and so on. The first edge of the graph [Ip, c1] is
labeled by the multiset {Ig’l, 1} = {Ig’l}, similarly a generic edge [¢;,c;] € Ep, is labeled by
the multiset {17 }.

For example, in Figure 4 we can see the Initial Fact Encoding Graph of the fact “p =
(on A B)” of the BlocksWorld domain. The first node is named as “I,,,” and its label is the
multiset Ap(Lon) = {(Lon,1)} = {Ion}. the second node represents the object “A” with label
Ap(A) = {(Obj,1)} = {Obj} and finally the third node represents the object “B” and its label
is A\p(B) = {Obj}; the label of the [I,,, A] arc is the multiset (% 1)y = (1% and the
label of the [A, B] arc is the multiset { (Io:2, 1)} = {152}

Similarly to Definition 7 we define the Goal Fact Encoding Graph £%(q) of the fact
q=q(c:t],....c, : t,) € G using {G,} for the labeling procedure.

Given a planning problem IT with initial and goal states I and G, the Planning Encoding
Graph of I1, that we indicate as &, is a directed labeled graph derived by the encoding graphs
of the initial and goal facts:

Eney = U g'p)v U E%a))
pel qeG

i.e. the Planning Encoding Graph of II(I, G) is a graph obtained by merging the Initial
and Goal Fact Encoding Graphs. For simplicity in the following we visualise it as a three-level
graph. The first level is derived from the predicate symbols of the initial facts, the second level
encodes the objects of the initial and goal states and the third level shows the goal fact nodes

derived from the predicate symbols of the goal facts.?
Figure 5 illustrates the Planning Encoding Graph for the Sussman anomaly planning prob-
lem in the BlocksWorld domain. The nodes of the first and third levels are the initial and goal
fact relation nodes: the vertices oy, Iijeqr and Iy, —iqpie are derived by the predicates of the

3Following the conceptual graph notation, the first and third level nodes correspond to initial and goal fact
relation nodes, while the nodes of the second level correspond to concept nodes representing the objects of the
initial and goal states.

18

initial facts, while G, by the predicates of the goal facts. The nodes of the second level are
concept nodes which represent the objects of the current planning problem A, B and C', where
the label “Obj” corresponds to their type. The initial fact “(on C A)” determines two arcs, one
connecting I, to the vertex C' and the second connecting C to A; the labels of these arcs are
derived from the predicate symbol “on” determining the multisets {Ighl} and {Iol;?} respec-
tively. In the same way the other arcs are defined. Moreover since there is no overlapping
among the edges of the Initial and Goal Fact Encoding Graphs, the multiplicity of the edge
label multisets is equal to 1; on the contrary the label multisets of the vertices associated to the
objects are:

A(A) ={(00j,3)}, A(B) = {(Obj,4)} and \(C) = {(Obj,3)}.

Moreover it could be useful to point out that if an object ¢ appears more than once in an
initial (goal) fact p(cy....c,,) of a planning problem II, then the corresponding Initial (Goal)
Fact Encoding Graph is built as usual (instantiating n nodes, one each c¢;), while during the
construction of the Planning Encoding Graph obtained by merging the Initial and Goal Encod-
ing Graphs of II, the nodes that correspond to the same object are merged into a single vertex
node.

This graph representation can give us a detailed description of the “topology” of a plan-
ning problem without requiring any a priori assumptions on the relevance of certain problem
descriptors for the whole graph. Furthermore it allows us to use Graph Theory based tech-
niques in order to define effective matching functions. In fact a matching function from IT’
to IT can be derived by solving the Maximum Common Subgraph problem on the correspond-
ing Planning Encoding Graphs. A number of exact and approximate algorithms have been
proposed in the literature so as to solve this graph problem efficiently. With respect to normal
conceptual graphs [14] used for Graph-based Knowledge Representation, we use a richer label
representation based on multisets. A single relation node is used to represent each predicate of
the initial and goal facts which reduces the total number of nodes in the graphs considerably.
This is extremely important from a computational point of view since, as we will see in the fol-
lowing sections, the matching process must be repeated several times and it directly influences
the total retrieval time.

In the following we examine a procedure based on graph degree sequences that is useful
to derive an upper bound on the size of the MCES of two graphs in an efficient way. Then
we present an algorithm based on Kernel Functions that allows to compute an approximate
matching of two graphs in polynomial time.

3.1.2 Screening Procedure

As explained previously, the retrieval phase could be very expensive from a computational
point of view; so we have developed a screening procedure that can be used in conjunction
with an object matching algorithm.

Similarly to the RASCAL system [66], we use degree sequences [70] to calculate an upper
bound on the size of a Maximum Common Edge Subgraph (MCES) between a pair of graphs.
Note that degree sequences of a graph have already been used by other authors to establish
upper bounds on graph invariants [40, 55] and for indexing graph databases [64].

First, the set of vertices in each graph is partitioned into [partitions by label type, and
then sorted in a non-increasing total order by degree.® Let L’i and Lg denote the sorted degree
sequences of a partition ¢ in the planning encoding graphs (71 and G, respectively. An upper

SThe degree or valence of a vertex v of a graph G is the number of edges which touch v.

19

bound on the number of vertices Vertices(G1,G2) and edges Edges(G1,G2) of the MCES
graph can be computed as follows:

l . .
Vertices(G1,Gs) = Z min (|LZ1|7 |L7é|)
i=1

min(LAHEY) min (|E(u}?)], | E(v37))
2

!
Edges(G1,Ga) = |).
i=1 j=1
where vi’j indicates the j-th element (vertex) of the L} sorted degree sequence and £ (vi’j)
indicates the set of arcs connected to the vertex v”. An upper bound on the similarity between
(G1 and G5 can be expressed using Johnson’s similarity coefficient [43]:

simil® _ (Vertices(Gl,Gg)+Edges(G1’G2))2 i
GG = G+ B - (V(Ga) = [B(G)D)

_ (Vertices(G1,G2) + Edges(G1, G2))? (6)
|G| - G2l

Since Vertices(G1,G2) and Edges(G1,G2) determine an upper bound on the number of
nodes and arcs of the MCES of G; and G, the similds(Gl, G2) similarity measure ranges
from O to 1 and it is easy to show that it obeys the following inequality,

V(G +E(G12)))? _ |Gl
|G -Gl |G| -Gl

where G5 is the MCES between graphs G and Gs. Clearly, simil?*(G1,G2) can be used
as an upper bound for the size of the MCES between (G; and G and this procedure provides
a rapid screening mechanism which takes advantage of local connectivity and vertex labels
to help eliminate unnecessary and costly MCES comparisons. For screening purposes, it is
only necessary to specify a minimum acceptable value for the MCES based graph similarity
measure. If the value determined by simil?*(G1,Gy) is less than the minimum acceptable
similarity, then the object matching comparison can be avoided. This procedure can be per-
formed by using the quick sort algorithm in O(n - logn) time, where n = max; (|L’1|, ILi)).
Figure 6 shows the degree sequences of two Planning Encoding Graphs and the correspond-
ing similarity value simil®. To compute the degree sequences, the vertices of the graphs
are first separated into partitions according to their label type. Considering the (G; graph,
the L% degree sequence is of type “Obj” and it has three elements: the vertices “v% 1= p,

SimildS(G1, GQ) >

“vi 2 = A” and “v% 3 = C” with degree 5, 4 and 4 respectively. Similarly the second degree
sequence L? of Gy is of type “G,y,” which has only one element: the vertex “vf’l = Gop”
with degree 2. Moreover, the entry “v;’?’ = D” of graph G belongs to the sorted degree
sequence L% of type “Obj”, it is in third position in the degree sequence and its degree is
equal to 4; while the entry “US”I = I.eqr” of graph G belongs to the degree sequence L3
which is of type “I .4~ it is in first position in the degree sequence Lg and it has degree 3.
Vertices(G1,Gs) is calculated by summing the size of the set L’ with the fewest non-null el-
ements in graphs GG1 and G. Since L% has 3 elements and L% has 4 elements, the first term of
Vertices(G1,G2) is equal to min (|L{,|L}|) = 3. Considering the other partitions L, ..., L
we obtain Vertices(G1,G2) = 8.

Besides Edges(G1,G2) is determined by summing the min (|E(vij)|, |E(v;])|) values
of each partition 7, adding the resulting values together and then integer dividing the result

20

Initial:
(on—table D), (on-table E),
(on—table G), (on F D), (clear E),

Initial:

(on-table A), (on—table B) (clear F), (clear G), (handempty)
(on C A), (clear C), (clear B)
(handempty) ’J_‘
il :
E| |G
1 0| 2]]
B @ ol
(on DE), (on EF),
—_ (on F G)
Goal |
(onAB), (on B C) D]
,
B ‘ ' I ‘
C Ion Letear Lon—table handem. G Ion clear Ton-table Tnandem.
A1(A) = {(0bj,3)}, A1 (B) = {(Obj,4)}, A1 (C) = {(Obj,3)} A2(D) = {(Obj,3)}, A2 (E) = {(Obj,4)}, X2 (F) = {(Obj,4)}, X2(G) = {(Obj,3)}
Degree sequences 1st graph (G1) Degree sequences 2nd graph (G3)
Ly « Obj [E(B)|=5 | |E(A)]=4 | |E(O)|=4 L « Obj [E(F)=6 | [E(B) =5 | |E(D)=4 | |E(G)|=3
Lél < Gon [E(Gon)| =2 132 < Gon [E(Gon)l=3
Li < Iciear [E(Iciear)l =2 Li “Iclear [E(Iciear) =3
L < Ion-t. |E(Ion-t.)| =2 L3 = Ton-t. [E(Ion-t.)| =3
6L? “Ion |E(Ion)| =1 L5 < Ion [E(Ion)| =1
LY < Ihand. | 1EUhana) =0 Ly < Ihand. | 1EUhand)=0
) (5+4+4) 2 2 2 1 C ds (8+10)2
Vertices(G1,G2) = 3+1+1+1+1+1 =8; Edges(G1,G2) = ——+—-+—+—+—[=10; simil"" (G1,G3)= ———— =0.75
2 2 2 2 2 (8+10) % (9 +15)

Figure 6: Planning Encoding Graphs, degree sequences and the corresponding similarity value for two
planning problems in the BlocksWorld domain.

by two. For example, the first term of Edges(G1,G2) is obtained by dividing by two the
following value:

min (|E oy)|, |E (o)) + min (1B (o), [E(vy*)]) + min (|E(oy)], |E(vy®)])

=min (5,6) + min (4,5) + min (4,5) =5+ 4 + 4.

If we consider the elements of the other partitions we obtain Edges(G1,G2) = 10; since
[V(G1)| =8, |[E(G1)| = 10, |[V(G2)| = 9 and |V (G2)| = 15, the degree similarity value of G
and Gy (simil®(Gy,Gy)) is equal to 0.75.

3.1.3 Kernel Functions for Object Matching

As previously exposed obj_match is an NP-hard problem and its exact resolution is infeasi-
ble from a computational point of view also for a limited number of candidates in the case base.
In the following we present an approximate evaluation based on kernel functions. Our kernel
functions are inspired by Frohlich et al.’s work [26, 27, 25] on kernel functions for molecular
structures. Their goal is to define a kernel function which measures the degree of similarity
between two chemical structures which are encoded as undirected labeled graphs. Our goal is
to define a matching function among the objects of two planning problems encoded as directed
graphs.

The intuition of these kernel functions is that the similarity between two graphs depends
mainly on the matching of the pairs of vertices and the corresponding neighbourhoods; i.e.,
two graphs are more similar if the structural elements from both graphs fit together better and
if these structural elements are connected in a more similar way in both graphs. Thereby,
the graph properties of every single vertex and edge in both structures have to be considered.
On a vertex level this leads to the idea of looking for those vertices in the two graphs that
have the best match with regard to structural properties. In this way it is possible to consider
not only direct neighbours, but also neighbours that are farther away, up to some maximal

21

Figure 7: Possible assignments of vertices from G to those of Graph G’. The kernel function & mea-
sures the similarity of a pair of vertices (v, u). The goal is to find the optimal assignment of all vertices
from G to those of G’, which maximises the overall similarity score, i.e., the sum of edge weights in the
bipartite graph, where each edge can be used at most once.

topological distance. We now want to associate each vertex in one graph to exactly one vertex
in another graph such that the overall similarity is maximised. This problem can be modeled
as a maximum weight bipartite matching problem where our kernel function determines the
similarity between pairs of vertices. From this algorithm we know for each vertex in one
graph to which vertex in the other graph it is assigned to. This guarantees us an easy way of
interpreting and understanding our kernel function since a matching between an object of the
planning problem IT and an object of II” directly derives from a matching between a vertex of
the planning encoding graph G11 and a vertex of Gry.

Let us assume we have two graphs G and G’, which have vertices v1, ..., v, and uq, ..., U,
respectively. Let us further assume we have a kernel function %k, which compares a pair of
vertices v;, uj from both graphs, including information on their neighbourhoods. We now want
to assign each vertex of the smaller of both graphs to exactly one vertex of the bigger one such
that the overall similarity score, i.e., the sum of kernel values between individual vertices, is
maximised. Mathematically this can be formulated as follows: let (denote a permutation of
an n-subset of natural numbers 1, ...,m, or a permutation of an m-subset of natural numbers
1,...,n, respectively. Then we are looking for the quantity

maz¢ Xyt k(veeny,un) ifn>m
max¢ Yoy k(vn, ueny) otherwise

K(G,G') = { (7)

K is a valid kernel function, as shown by [25], and hence a similarity measure for graphs.
Implicitly it computes a dot product between two vector representations of graphs in some
Hilbert space. Figure 7 illustrates this idea: between any pair of vertices from the upper and
the lower structure there is some similarity, which can be thought as the edge weights of a
bipartite graph. We now have to find a combination of edges such that the sum of edge weights
is maximised. Thereby each edge can be used at most once. That means in the end exactly
min(n,m) out of n - m edges are used up.

We now have to define the kernel function k. For this purpose let us suppose we have
two kernel functions k, and k. which compare the vertex and edge labels A(-), respectively.
In the following e;(v) denotes the j-th edge of the vertex v, while n;(v) denotes the node
adjacent to the vertex v associated to the j-th edge e;(v). In the same way e;/ °(v) denotes
the j-th incoming/outgoing edge, while n;./ °(v) denotes the direct predecessor/successor of

the vertex v associated to the j-th incoming/outgoing edge e;./ ‘(v). N (v;) denotes the set of

22

vertices adjacent to the vertex v;, while E(v;) denotes the set of incoming and outgoing edges
of vertex v;. Similarly N’ i ?(v;) denotes the set of direct predecessor/successor vertices of the
vertex v;.

Given a pairs of vertices v and u, we use the kernel function k,, (v, u) = vo(v, u)- %,

where v (v, u) is equal to 1.1 if u and v correspond to the same object (it is verified considering
the names of the objects represented by vertices v and v), otherwise it is equal to 1.0 . The
~o coefficient has been introduced in our kernel functions in order to allow a greater stability
in the activity assignment which is useful especially when human agents are handled by the
planner. For example, in a logistic domain, we would like the drivers to be assigned the same
set of activities as much as possible. While for pairs of edges we use k.(ex(v),e;(u)) =

REZ:EZ;;B?E?EZ;;I if e;,(v) and e;(u) are both incoming or outgoing edges of the vertices v and
J

u, otherwise ke(er(v),e;(u)) is equal to 0. Formally, this corresponds to the multiplication
by a so-called d-kernel.

We define the base kernel between two vertices v and u, including their direct neighbour-
hoods as

1 . . . }
kbase(v7u) = kv(va u) + |.N”(U)|] ‘NZ(UN hzh, kv (nz(v)ﬂﬁy(u)) : ke (62(?1), e;ﬂ(u)) +
. 2 ko (7, (0), 15, (u)) - ke (€5, (v), €5 (u)))

TN)] V()] &,

This means that the similarity between two vertices consists of two parts: first the similar-
ity between the labels of the vertices and second the similarity of the neighbourhood structure.
It follows that the similarity of each pair of neighbours n;l/ ’(v), nz/,o(u) is weighed by the sim-
ilarity of the edges leading to them. The normalisation factors before the sums are introduced
to ensure that vertices with a higher number of arcs do not automatically achieve a higher sim-
ilarity. Hence we divide the sums by the number of the addends in them. It is also interesting
to point out that the previous definition is just a classical convolution kernel as introduced by
Haussler [41].

In the following we define a more accurate kernel R;, which compares all the direct neigh-
bours of the vertices (v,u) as the optimal assignment kernel between all the neighbours of v
and v and the edges leading to them so that we can to improve the similarity values that can be
obtained simply using kp,se; more precisely:

iy maze L M ky (ney (v),mi(w)) - ke (ecy (v), ei(w)) £ [E(0)] > [B(u)]
E(u .
m max¢ ZL:1(Ik, (ni(v),nc(i)(u)) ke (e3(v), ec(i) (u)) otherwise

Rl (’Ua u) = {
©))

Similarly to the graph kernel K of equation (7), the intuition behind this kernel function

is that the similarity between two nodes depends not only on the nodes structure but also on
the matching of the corresponding neighbourhoods; i.e., two nodes are more similar if their

neighbourhood elements are connected in a more similar way in both nodes.
Theorem 4 R, is a kernel function.

Of course it would be beneficial not to consider the match of direct neighbours only, but
also that of indirect neighbours and vertices having a larger topological distance. For this
purpose we can evaluate R; not at (v,u) only, but also at all pairs of neighbours, indirect

23

neighbours and so on, up to some topological distance L. The weighed average of all these
values corresponds to the weighed mean match of all indirect neighbours and vertices of a
larger topological distance. Adding them to k, (v, u) leads to the following definition of the
neighbourhood kernel ks

L
kn(v,u) = ky(v,u) +y(1) Ry (v, u) + ZZ:’y(l)Rl(v,u) (10)
=2

where 7y(1) denotes a decay parameter which reduces the influence of neighbours that are
at topological distance /;’ similarly, R; denotes the average of all R; evaluated for neighbours
at distance [and it is computed from R;_; via the recursive relation:

1

Ru(0,0) = e iG] 2 T () (1)) e (o).l 00) +

) ﬂ N 2, et (005) e (€5,0): e () (1)

i.e., we can compute kar(v,u) by iteratively revisiting all direct neighbours of v and w.
The first addend in equation (10) takes into account the nodes (v, u), while the second addend
takes into account the direct neighbours of (v, u) computing the R; (v, u) kernel function, then
the next addend (i.e. v(2) - R2(v,u)) computes the average of the match of all neighbours
which have topological distance 2 by evaluating R; for all direct neighbours of (v,). The
fourth addend (i.e. 7(3) - R3(v,u)) does the same for all neighbours with topological distance
3. Finally, the last addend considers all neighbours which have topological distance L by
evaluating R; for all neighbours at topological distance L — 1. Furthermore we can easily show
that:

Theorem 5 Let (1) = p! with p € (0,0.5). If there exists a C € IR* such that k,(v1,vs) < C
forall vy, vo and k.(e1,e3) < 1 for all eq, e then (eq. 10) converges for L — oo.

To briefly summarise, our approach works as follows: we first compute the similarity of all
vertex and edge features using the kernels &, and k.. Having these results we can compute the
match of direct neighbours R; for each pair of vertices from both graphs by means of equation
(9). From R; we can compute Ry, ..., R, by iteratively revisiting all direct neighbours of each
pair of vertices and computing the recursive update formula (11). Having k, and Ry, ..., Ry,
directly gives us ks, the final similarity score for each pair of vertices, which includes struc-
tural information as well as neighbourhood properties. With kxs we can finally compute the
optimal assignment kernel between two graphs G and G’ using Equation (7). Moreover (7)
can be calculated efficiently by using the Hungarian method [49] in O(n?), where n is the
maximum number of vertices of both graphs.

The kernel functions ks and ks can be used in equation (7) to define the optimal assign-
ment kernels Kp,s. and /Cpr respectively. Our optimal assignment kernel functions also define
a permutation (that allows to easily determine the matching function p associating each object
in the smaller planning problem to exactly one object in the other planning problem.

The worst case scenario is determined when we consider two complete graphs with the
same number of nodes n. In this case, equation (8) has computational complexity O(n?) and

"The ~(-) function used in our experimental evaluation is defined in section 4.1.

24

Algorithm RELAXEDPLAN

Input: a set of goal facts (G), the set of facts that are true in the current state (INIT),

a possibly empty relaxed plan (A)

Output: arelaxed plan ACT'S estimating a minimal set of actions required to achieve G
1. G=G-INIT;ACTS=A
2. F=Ugeacrs Add(a)

3. whileG-F+u

4, g="afactin G- F”

5. bestact = Bestaction(g)

6 Rplan = RelaxedPlan(Pre(bestact), INIT, ACTS)
7 ACTS = Aset(Rplan) u {bestact}

8 F =Ugeacrs Add(a)

9. return ACTS

Figure 8: Algorithm for computing a relaxed plan estimating a minimal set of actions required to
achieve a set of facts G from the state INIT. Bestaction(g) is the action that is heuristically chosen to
support g as described in [31].

Algorithm EVALUATEPLAN
Input: a planning problem IT = (I, G), an input plan 7 and an adaptation cost limit Climit
Output: a relaxed plan to adapt 7 in order to resolve II
CState=I; Rplan =@
forall aem; do
if 3f € Pre(a) s.t f ¢ CState then
Rplan =RELAXEDPLAN(Pre(a), CState, Rplan)
if |Rplan| > Climit then
return Rplan
CState = (CState/Del(a)) u Add(a)
if g e G s.tg ¢ CState then
Rplan =RELAXEDPLAN(G, C'State, Rplan)
return Rplan

PNAN R W=

e

Figure 9: Algorithm to evaluate the ability of 7 to solve the planning problem IT

since it has to be examined n? time in equation (7) we obtain a computational complexity of
n?-0(n?) + O(n3) = O(n?) for the Kpus. kernel function. Moreover, function R; has a
computational complexity of O(n?) since we use the Hungarian method for its computation;
similarly to Ky, the R; function has computational complexity O(n?) and, limiting the ks
evaluation to a topological distance L which is a polynomial of n, we obtain a computational
complexity for kx equal to 1+O(n3) +O(n)-O(n?) = O(n?). The kx kernel function has to
be examined n? times in equation (7), determining a computational complexity for /s equal
ton?-0(n?) + O(n?) = O(n?).

As it will be described in the next section, in OAKPLAN both K, and K have been
used; Kpqse, Which has a lower computational complexity, has been used in order to prune
unpromising case base candidates. It allows to define a first matching function 4. and the
corresponding similarity function simzl,,, , as described in the following section. On the
other hand XCxs has been used to define a final matching function p and the corresponding
similarity function simzl,,.

25

Algorithm RETRIEVEPLAN

Input: a planning problem II, a case base C' = (II;, ;)

Output: candidate plan for the adaptation phase

1.1. 7wr = EVALUATE_PLAN(IL, EMPTY_PLAN, c0)

1.2. Define the set of initial relevant facts of IT using wg: I, = I N Ugery, pre(a)

1.3, Compute the Planning Encoding Graphs &y and &y, of II(1, G) and g (I, G)
respectively, and the degree sequences L{TR

14. forallll;eC do

L.5. simil; = simil® (En,, Eny)

1.6. push((II;, simil;)), queue)

1.7. best_ds_simil = max(best_ds_simil, simil;)

2.1. forall (II;, simil;) € queue s.t. best_ds_simil — simil; < limit do”

2.2. Load the Planning Encoding Graph &y, and compute the matching function fipqse
using Kpgse (Em,, Em1)

2.3. pUSh((Hiaubase)7queuel)

2.4. best_jipgse_simil = max(best_jipqse_simil, simil,, . (11;,11))

3.1. forall (IL;, fthase) € queuey s.t. best_ipase_simil — simil,,, , (I1;,II) < limit do

3.2. Compute the matching function pa using Cpr (€, , Em)

3.3. if simily, (IL;, IT) > simil,,, . (IL;,II) then p; = pun
else l; = tpase

3.4. push((II;, u;), queues)

3.5. best_simil = max(best_simil, simil,,, (I1;,1T))

4.1. best_cost = ag-|mgr|; best_plan =EMPTY_PLAN
42. forall (II;, ;) € queues s.t. best_simil — simil,,, (IL;, II) < limit do
4.3, Retrieve 7; from C'

4.4. cost; = [EVALUATEPLAN(II, p;(;), best_cost - simil,,, (I1;,11))|
4.5. if best_cost - simil,, (I1;, IT) > cost; then

4.6. best_cost = cost;[simil,,, (I1;,1T)

4.7. best_plan = p;(m;)

5.1. returnbest_plan

* We limited this evaluation to the best 700 cases of queue.

Figure 10: Algorithm to find a suitable plan for the adaptation phase from a set of candidate cases or
the empty plan (in case the “generative” approach is considered more suitable).

3.2 Plan Evaluation Phase

The purpose of plan evaluation is that of defining the capacity of a plan 7 to resolve a partic-
ular planning problem. It is performed by simulating the execution of 7 and identifying the
unsupported preconditions of its actions; in the same way the presence of unsupported goals
is identified. The plan evaluation function could be easily defined as the number of incon-
sistencies in the current planning problem. Unfortunately this kind of evaluation considers a
uniform cost in order to resolve the different inconsistencies and this assumption is generally
too restrictive. Then our system considers a more accurate inconsistency evaluation criterion
so as to improve the plan evaluation metric. The inconsistencies related to unsupported facts
are evaluated by computing a relaxed plan starting from the corresponding state and using the
RELAXEDPLAN algorithm in LPG [31]. The number of actions in the relaxed plan determines
the difficulty to make the selected inconsistencies supported; the number of actions in the final
relaxed plan determines the accuracy of the input plan 7 to solve the corresponding planning
problem.

26

Figure 8 describes the main steps of the RELAXEDPLAN function.? It constructs a relaxed
plan through a backward process where Bestaction(g) is the action a’ chosen to achieve a
(sub)goal g, and such that: (i) g is an effect of a’; (ii) all preconditions of a’ are reachable
from the current state INIT; (iii) the reachability of the preconditions of a’ requires a minimum
number of actions, evaluated as the maximum of the heuristically estimated minimum number
of actions required to support each precondition p of a’ from INIT; (iv) a’ subverts a minimum
number of supported precondition nodes in A (i.e., the size of the set Threats(a') is minimal).

Figure 9 describes the main steps of the EVALUATEPLAN function. For all actions of
m (if any), it checks if at least one precondition is not supported. In this case it uses the
RELAXEDPLAN algorithm (step 4) so as to identify the additional actions required to satisfy
the unsupported preconditions. If Rplan contains a number of actions greater than C'limit
we can stop the evaluation, otherwise we update the current state CState (step 7). Finally we
examine the goal facts G (step 8) to identify the additional actions required to satisfy them, if
necessary.

Figure 10 describes the main steps of the retrieval phase. We initially compute a relaxed
plan 7p, for II (step 1.1) using the EVALUATEPLAN function on the empty plan which is needed
so as to define the generation cost of the current planning problem IT (step 4.1)° and an estimate
of the initial state relevant facts (step 1.2). In fact we use the relaxed plan g so as to filter out
the irrelevant facts from the initial state description.'” This could be easily done by considering
all the preconditions of the actions of 7:

I, =10 | pre(a).
aeTR

Then in step 1.3 the Planning Encoding Graph of the current planning problem II and
the degree sequences that will be used in the screening procedure are precomputed. Note
that the degree sequences are computed considering the Planning Encoding Graph &7y, of the
planning problem Il (Iy,,G) which uses I, instead of I as initial state. This could be
extremely useful in practical applications when automated tools are used to define the initial
state description without distinguishing among relevant and irrelevant initial facts.

Steps 1.4 — 1.7 examine all the planning cases of the case base so as to reduce the set of
candidate plans to a suitable number. It is important to point out that in this phase it is not
necessary to retrieve the complete planning encoding graphs of the case base candidates Gy
but only their sorted degree sequences Lf—l, which are precomputed and stored in the case base.
On the contrary the planning encoding graph and the degree sequences of the input planning
problem are only computed in the initial preprocessing phase (step 1.3).

All the cases with a similarity value sufficiently close!! to the best degree sequences sim-
ilarity value (best_ds_simil) are examined further on (steps 2.1-2.4) using the K. kernel
function. Then all the cases selected at steps 2.z with a similarity value sufficiently close to the
best simil,,, .. similarity value (best_fipqse_simil) (step 3.1) are accurately evaluated using
the Ko kernel function, while the corresponding iz function is defined at step 3.2. In steps
3.3-3.5 we select the best matching function found for II; and the best similarity value found
until now.

SRELAXEDPLAN is described in detail in [31]. It also computes an estimation of the earliest time when all facts
in GG can be achieved, which is not described in this paper for sake of simplicity.

The o coefficient gives more or less importance to plan adaptation vs plan generation; if i > 1 then it is
more likely to perform plan adaptation than plan generation.

"In the relaxed planning graph analysis the negative effects of the domain operators are not considered and a
solution plan 7g of a relaxed planning problem can be computed in polynomial time [42].

"n our experiments we used limit = 0.1.

27

We use the relaxed plan 7y in order to define an estimate of the generation cost of the cur-
rent planning problem II (step 4.1). The best_cost value allows to select a good candidate
plan for adaptation (which could also be the empty plan). This value is also useful during the
computation of the adaptation cost through EVALUATEPLAN, in fact if such a limit is exceeded
then it is wasteful to use CPU time and memory to carry out the estimate and the current evalu-
ation could be terminated. The computation of the adaptation cost of the empty plan allows to
choose between an adaptive approach and a generative approach, if no plan gives an adaptation
cost smaller than the empty plan.

For all the cases previously selected with a similarity value sufficiently close to best_simil
(step 4.2) the adaptation cost is determined (step 4.4). If a case of the case base determines
an adaptation cost which is lower than best_cost-simil,, (II;,II) then it is selected as the
current best case and also the best_cost and the best_plan are updated (steps 4.5-4.7).
Note that we store the encoded plan y;(7;) in best_plan since this is the plan that can be
used by the adaptation phase for solving the current planning problem II. Moreover we use the
simil,,; (11;,IT) value in steps 4.4 — 4.6 as an indicator of the effective ability of the selected
plan to solve the current planning problem maintaining the original plan structure and at the
same time obtaining low distance values.

3.3 Plan Adaptation

As previously exposed, the plan adaptation system is a fundamental component of a case-
based planner. It consists in reusing and modifying previously generated plans to solve a new
problem and overcome the limitation of planning from scratch. As a matter of fact, in planning
from scratch if a planner receives exactly the same planning problem it will repeat the very
same planning operations. In our context the input plan is provided by the plan retrieval phase
previously described; but the applicability of a plan adaption system is more general. For
example the need for adapting a precomputed plan can arise in a dynamic environment when
the execution of a planned action fails, when the new information changing the description of
the world prevents the applicability of some planned actions, or when the goal state is modified
by adding new goals or removing existing ones [22, 31].

Different approaches have been considered in the literature for plan adaptation; strategies
vary from attempting to reuse the structure of an existing plan by constructing bridges that link
together the fragments of the plan that fail in the face of new initial conditions [37, 38, 39, 44],
to more dynamic plan modification approaches that use a series of plan modification operators
to attempt to repair a plan [53, 80]. From a theoretical point of view, in the worst case, plan
adaptation is not more efficient than a complete regeneration of the plan [61] when a conserva-
tive adaptation strategy is adopted. However adapting an existing plan can be in practice more
efficient than generating a new one from scratch, and, in addition, this worst case scenario
does not always hold, as exposed in [3] for the Derivation Analogy adaptation approach. Plan
adaptation can also be more convenient when the new plan has to be as “similar” as possible to
the original one.

Our work uses the LPG-adapt system given its good performance in many planning domains
but other plan adaptation systems could be used as well. LPG-adapt is a local-search-based
planner that modifies plan candidates incrementally in a search for a flawless candidate. We
describe the main components of the LPG-adapt system in the following section. It is important
to point out that this paper relates to the description of a new efficient case-based planner and
in particular to the definition of effective plan matching functions, no significant changes were
made to the plan adaptation component (for a detailed description of it see [22]).

28

3.3.1 Local Search Techniques for Plan Adaptation

Here we present the search techniques used in LPG-adapt. We start with a description of the
general local search scheme in the space of Action graphs (A-graph)[31]. Then we concentrate
on the heuristics of LPG-adapt and on its methods for maintaining the A-graph representa-
tion during the search, for computing the solution plans and for deriving good quality plans
incrementally.

An action graph (A-graph) A of a planning graph G is a subgraph of G such that, if a is
an action node of G in 4, then also the fact nodes of G corresponding to the preconditions and
positive effects of a are in A, together with the edges connecting them to a [34]. The general
scheme for searching for a solution graph (a final state of the search) consists of two main
steps. The first step is an initialisation of the search in which we construct an initial A-graph.
The second step is a local search process in the space of all A-graphs, starting from the initial
A-graph. We can generate an initial A-graph in several ways; in our context the A-graph is
obtained from an existing plan given as input to the adaptation process by the retrieval phase.
Further details on the initialisation step can be found in earlier papers on planning through
local search and action graphs [31, 34, 36]. Once we have computed an initial A-graph, each
basic search step selects an inconsistency in the current A-graph. If this is an unsupported fact
node, then in order to resolve (eliminate) it, we can either add an action node that supports
it, or we can remove an action node that is connected to that fact node by a precondition
edge. The strategy for selecting the next inconsistency to handle may have a significant impact
on the overall performance and it has been extensively studied in the context of causal-link
partial-order planning [33, 65]; the default strategy corresponds to selecting the lowest level
inconsistency.

Given an action graph A and an inconsistency o in A, the neighbourhood N (o, A) of o
in A is the set of A-graphs obtained from .4 by applying a graph modification that resolves
o. The two basic modifications consist of an extension of the A-graph to include a new action
node, or a reduction of the A-graph to remove an action node (and the relevant edges). At each
step of the local search scheme, the elements of the neighbourhood are evaluated according
to a function estimating their quality, and an element with the best quality is then chosen as
the next possible A-graph (search state). The quality of an A-graph depends on a number of
factors, such as the number of inconsistencies, the estimated number of search steps required
to resolve them and the overall cost of the actions in the represented plan.'?

The local search strategy used by LPG-adapt is Walkplan a local search algorithm with
restarts which is similar to the heuristic used by Walksat [47, 72] to solve boolean satisfiability
problems. In Walkplan, see Figure 11, the best element in the neighbourhood is the A-graph
which has the lowest decrease of quality with respect to the current A-graph, i.e., it does not
consider possible improvements. Like Walksat, our strategy uses a noise parameter p. Given
an A-graph A and an inconsistency o, if there is a modification for ¢ that does not decrease the
quality of A, then this modification is performed, and the resulting A-graph is chosen as the
next A-graph; otherwise, with probability p one of the graphs in N (o, .A) is chosen randomly,
and with probability 1 — p the next A-graph is chosen according to the minimum value of the
evaluation function. If a solution graph is not reached after a certain number of search steps,
the current A-graph is reinitialised and the search is repeated up to a user-defined maximum
number of times.

2For simple STRIPS domains the execution cost of the plan is measured in terms of the number of actions (i.e.,
each action has cost 1), while the plan makespan is ignored.

29

Algorithm WALKPLAN(II(I, G),max_steps,max_restarts,p)

Input: a planning problem 11, the maximum number of search steps max_steps,
the maximum number of search restarts max_restarts, a noise factor p (0 < p <1)
and an input plan 7 for the adaptation process.

Output: a solution graph representing a plan solving [T or fail.

for i =1 tomax_restarts do
A = “an initial A-graph derived from 7"
for j = 1 to max_steps do
if A is a solution graph then
return A
o = “an inconsistency in A”
N(o,.A) = “neighbourhood of A for ¢”
if 3. A" € N(o,.A) such that the quality of A" is not worse than the quality of .A
then A = A’ (if there is more than one A’-graph, choose randomly one)
else if random < p then
11. A = “an element of N (o,.4) randomly chosen”
12. else A = “ best element in N (o, A)”
13. return fail.

e i o e

—
e

Figure 11: General scheme of Walkplan with restarts. random is a randomly chosen value between
0 and 1. The quality of an action graph in the neighbourhood is measured using an evaluation function
estimating the cost of the graph modification used to generate it from the current action graph.

The behaviour of LPG-adapt is controlled by an evaluation function that is used to select
between different candidates in the neighbourhood. The elements of the neighbourhood are
evaluated according to an action evaluation function E. This function is used to estimate
the cost of either adding (E(a)?) or of removing (£(a)") an action node a to the current
partial plan 7 undergoing adaptation [31]. In order to properly manage adaptation planning
problems the function E has been extended to include an additional evaluation term that takes
into account the actions that do not belong to the input plan 7. The idea is that of penalising
the insertion and removal of the actions that increase the distance of the current partial plan m
under adaptation from the input plan 7. The function F is fully described in [31], while the
corresponding extensions for plan adaptation problems are described in [22].

Briefly, Eval(a)i returns a relaxed plan, 7, that contains a minimal set of actions for
achieving the unsupported preconditions of a and the set of preconditions of other actions in
the current partial plan that would become unsupported by adding a to it. Similarly, Eval(a)”
returns a minimal set of actions required to achieve the preconditions that would become un-
supported if a was removed from 7, The relaxed subplans used in Eval(a)i/ " are computed
by the RELAXEDPLAN algorithm. In the adaptation context, the last term of the evaluation
function E measures the distance between my — m, where 7 is the current partial plan (before
modification), and the relaxed plan 7, built by Eval® or Eval”. This is calculated to give an es-
timate of the expected distance between the finished plan we can expect to be constructed from
the result of modifying 7 with action a. We use the relaxed plan 7, to represent the portion
on the plan that is likely to be added into 7 in the subsequent planning process to arrive at a
complete plan.

RelaxedPlan constructs the relaxed plan m, through a backward process using the function
Bestaction in order to select the actions to insert in 7, [31]. In the adaptation context we ex-

30

tended Bestaction introducing a penalisation coefficient Ay (a) that evaluates the insertion
in 7, of an action a considering the elements of g, 7 and . itself:

1 if a¢(mo—7) -7,

Apesi(a) = { 0 otherwise (12

i.e we penalise the evaluation of a if it is not an action of g or it has already been selected for
the insertion in 7 or 7.

In general, E consists of three weighed terms, evaluating three aspects of the quality of the
current plan that are affected by the addition or removal of a:'?

E(a)i/r - ’ SeaTCh—COSt(a)i/r + _HE Execution_cost(a)i/r—i-
maxs MATE
+L2 evali(a) 1 (g -))
MaxTA

The first two terms of the two forms of the function E are unchanged from the standard
behaviour of LPG [31]. The first term of E estimates the minimum number of search steps
required to repair the flaws introduced by the insertion/remotion of a in/from the current action
graph; where the second estimates the total cost of the new actions defining the search cost
previously described, while the cost of an action is defined by the plan metric function and
is equal to 1 for pure STRIPS planning problems (see [31] for a detailed description). The
third term in the expressions for E is the adaptation term, estimating how plan modification
will affect the increase in distance from my. This term is only used for adaptation planning
problems.

The coefficients of each of these terms are used to normalise them, and to weigh their
relative importance. Thus pur and pa are non-negative coefficients that weigh the relative
importance of the execution and “difference” costs, respectively. Their values can be set by
the user, or they can be automatically derived from the expression defining the plan metrics
in the formalisation of the problem. The factors 1/maxg, 1/maxs and 1/max are used
to normalise the terms of £ to a value that is (upper) bounded by 1. maxg and maxa are
respectively the maximum value of the second and third term of E over all elements of the
neighbourhood, multiplied by the number « of inconsistencies in the current partial plan. The
term max s is defined as the maximum value of Search_cost over all possible action insertions
or removals that eliminate the inconsistency under consideration.'* Without this normalisation
the second term of E could be much higher than the other ones. This would guide the search
towards good quality plans without paying sufficient attention to their validity and similarity
with respect to mg. On the contrary, we would like the search to give more importance to
reducing the search cost, rather than to optimising the quality of the plan, especially when the
current partial plan contains many inconsistencies.

The LPG-adapt planner has an anytime behaviour, in fact it can produce a succession of
valid plans, where each plan is an improvement of the previous ones in terms of its “adaptation
quality”. This is a process that incrementally improves the fotal quality of the plans, which
can be stopped at any time to give the best plan computed so far (mp.s:). Each time we start
a new search, the input plan 7y provided by the retrieval phase is used to initialise the data

The LPG system considers an additional term related to the temporal execution cost that we have not examined
for sake of simplicity.

"“The role of & is to decrease the importance of the second and third optimisation terms when the current plan
contains many inconsistencies, and to increase them when the search approaches a valid plan.

31

oS i, ¥4

S

! N
a
S Lo o

S S A
S :
/ i Screening Procedure

L simil

é ‘—’(hw evaluation
: : ' +
5 b i K, evaluation

f EvaluatePlan

dor g :
Similar Cases & Correspéonding solution plan

Select best_plan

Lpg-adapt

Plan Adaptation

Solution Space ©

Figure 12: Retrieval and Adaptation phases.

structures. Furthermore, during search some random inconsistencies are forced in the plan
currently undergoing adaptation when a valid plan that does not improve 7., is reached. This
is a mechanism for leaving local optima. In our adaptation context the total quality of a plan
is derived considering a weighed evaluation of the metric quality and the “distance” of 7 from

-
Quality(m)
Quality(ﬂ-best)

|7 o

+(1-a) (14)

T, =«
Qwo(s Thest) |Thest N o

the rationale of this choice is that of trying to balance the quality of the plan produced and the
distance from the input plan 7."> The Q. (-,-) value is used to choose between the new valid
plan 7 and the best plan 7.5 found until now.

Figure 12 visualises the main steps of the retrieval and adaptation phases. The screening
procedure computes the simil® distance function so as to filter out the dissimilar cases and
reduce the number of planning cases that have to be examined accurately up to a suitable
number. Then we compute the Cp, s and K pr kernel functions and the corresponding fipqse and
pn matching functions to define the corresponding simil,, similarity values and identify the
candidate plans for the adaptation phase. These plans are evaluated using the EVALUATEPLAN
procedure and if the best case has an adaptation cost inferior to the generation cost then it is
used by LPG-adapt in order to find a suitable solution, otherwise a complete generation phase
is performed providing the empty plan to LPG-adapt.

5In our tests we used o = 0.5.

32

Algorithm INSERT_CASE(Case, 7, II(I, G))
Input: a case base C'ase, a solution plan 7 for planning problem II with initial state I and goal
state G.

Output: insert the planning case in C'ase if not present.

1. Define the set of initial state relevant facts I; of I using the input plan 7

2. Compute the Planning Encoding Graph &, of I, (I, G)

3. for each case (II;,7;) € Case

4. Compute the matching function p; using KCpr(Em,, Ex)

5. if complete_simil,, (I1;,11;) = 1 A|m;| < |7| then

6 return FALSE;

7. enfor

8. Insert the planning problem I1, (I, G), its solution plan 7, the Planning Encoding Graph &,
and the data structures for the screening procedure in C'ase

9. return TRUE;

Figure 13: High-level description of INSERT_CASE.

3.4 Plan Revision

Any kind of planning system that works in dynamic environments has to take into account fail-
ures that may arise during plan generation and execution. In this respect case-based planning is
not an exception; this capability is called plan revision and it is divided in two subtasks: eval-
uation and repair. The evaluation step verifies the presence of failures that may occur during
plan execution when the plan does not produce the expected result. When a failure is discov-
ered, the system may react by looking for a repair or aborting the plan. In this first hypothesis
the LPG-adapt system is invoked on the remaining part of the plan; in the latter hypothesis the
system repeats the CBP cycle so as to search a new solution.

3.5 Case Base Update

After finding the plan from the library and after repairing it with the LPG-adapt techniques
the solution plan can be inserted into the library or be discarded. The case base maintenance is
clearly important for the performance of the system and different strategies have been proposed
in the literature [75, 79]. Furthermore our attention has been oriented towards the improvement
of the competence of the case base; a solved planning problem is not added to the case base
only if there is a case that solves the same planning problem with a solution of a better quality.'®
Such a check has been introduced to the end of keeping only the best solution plans for certain
kinds of problems in the library as there can be different plans that can solve the same problems
with different sets of actions.

Figure 13 describes the main steps of the function used to evaluate the insertion of a plan-
ning problem II solved in the case base. First of all we compute the set of initial state relevant
facts I; using the input plan 7; this set corresponds to a subset of the facts of I relevant for the
execution of 7. It can be easily computed, as described in section 3.2, using the preconditions
of the actions in 7:

I =InJpre(a).

acem

'In our experiments we have considered only the number of actions for distinguishing between two plans that
solve the same planning problem but other and more accurate metrics could be easily added, i.e. consider for
example actions with not unary costs.

33

Note that I identifies all the facts required for the execution of the plan 7 and that this
definition is consistent with the procedure used in the RETRIEVEPLAN algorithm for the re-
laxed plan 7g.!” Then we compute the Planning Encoding Graph &, of the new planning
problem I1; (I, G) having I as initial state instead of I. At steps 3—6 the algorithm examines
all the cases of the case base and if it finds a case that solves II with a plan of a better qual-
ity with respect to 7 then it stops and exits. In order to do so we use the similarity function
complete_simil,,,, described in section 3.1.1, which compares all the initial and goal facts
of two planning problems. Otherwise if there is no case that can solve II; with a plan of a
better quality with respect to 7 then we insert the solved problem in the case base. As we can
observe at step 8, a planning case is made up not only by II; and 7, but also other additional
data structures are precomputed and added to the case base so that their recomputation during
the Retrieval Phase can be avoided.

An extension to the system could be that of developing a more thorough evaluation of the
competence of the library and developing a case base Maintenance Policy as described in [79],
which is left for future work.

4 Experimental Results

In this section, we present an experimental study aimed at testing the effectiveness of OAKPLAN
in a number of standard benchmark domains. In the first subsection, we describe the experi-
mental settings and then, in the second subsection, we present the system overall results. In
particular we examine the behaviour of OAKPLAN when different matching functions are used
and we experimentally analyse the impact of the size of the case base (number of planning
cases) in the overall performance of the system. In the third subsection, we experimentally
investigate the similarity values of our matching functions when the case base objects are pro-
gressively renamed. Finally, we compare our planner with four state-of-the-art planners.'®

4.1 Experimental Settings

Here we present and discuss the general results for the experimental comparison, moreover we
examine the importance of the matching functions and the size of the case base in the overall
performance of the system. In Appendix C we provide the plots of all the experiments.
OAKPLAN is written in C++ and uses the SQLite3 library'® for storing and retrieving the
data structures of the case base and the VFLIB library [17] so as to create and elaborate our
graph data structures.”’ The OAKPLAN code and the benchmark planning problems are avail-
able from the OAKPLAN website http://pro.unibz.it/staff/iserina/OAKplan/.

'"We have used this simple definition instead of using the causal links in 7 in order to compute the set of relevant
facts since it allows to obtain slightly better performance than the corresponding version based on causal links.
8We compared OAKPLAN with the following planners:

¢ METRIC-FF winner of the 2nd IPC;

¢ LPG winner of the 3rd IPC;

* DOWNWARD 1st Prize, Suboptimal Propositional Track 4th IPC;
¢ SGPLAN-IPCS winner of the 5th IPC.

19SQLite is a software library that implements a self-contained, serverless, zero-configuration, transactional SQL
database engine; further information can be found at http://www.sqlite.org/.

2 Although the VFLIB library can solve subgraph-isomorphism problems, its use turns out to be computationally
too expensive and the kernel functions described in section 3.1.3 are used instead.

34

We have conducted all the experimental tests using an AMD Sempron(tm) Processor 3400+
(with an effective 2000 MHz rating) with 1 Gbyte of RAM. Unless otherwise specified, the
CPU-time limit for each run is 10 minutes for OAKPLAN and 30 minutes for all the other
planners, after which termination is forced.?! In the following tests the maximum topological
distance L considered for the computation of the kas kernel function in equation (10) is set to

half of the number of nodes of the smaller of the two graphs examined (L = [wj)

since this value is sufficiently small to avoid convergence problems the (1) coefficient of
equation (10) is set equal to y(1) = (1 - %)l

Since our planner and LPG use a randomised search algorithm, the corresponding results
are median values over five runs for each problem considered. Moreover, since OAKPLAN and
LPG are incremental planners we evaluate their performance with respect to three different main
criteria: CPU-time required to compute a valid plan, the plan stability [22] of the generated
plans with respect to the corresponding solutions of the target plans and the quality of the best
plan generated within the given CPU-time limit.

In these tests the solution plans of the planning cases are obtained by using the domain
dependent planner TLPLAN [4] unless otherwise specified. TLPLAN is a planning system that
utilises domain specific search control information to guide simple forward chaining search,
and it is the winner of the Hand Coded track of the 3rd IPCs. Its use allows us to use a high
quality input plan with comparatively low investment of initial computation time. Using a plan
from a different planner also ensures that we are not artificially enhancing stability by relying
on the way in which the planner explores its search space.

Often the best quality solution computed by OAKPLAN requires much more time than the
first (unoptimised) solution. However, it should be noted that when a planning problem can
be solved by a satisficing planner within a reasonable amount of CPU-time (e.g., 10 CPU-
minutes), the quality of the computed solutions is practically very important, and for many
applications it can be more meaningful than CPU-time. Moreover, Metric-LPG generates a
sequence of valid plans with increasing quality, and often it produces good quality intermediate
plans much more quickly than the best (last) plan. In Section 4.4, we give empirical evidence
for this behaviour. In general, in Metric-LPG there is a tradeoff between plan quality and CPU-
time that can be exploited by the user, depending on whether for the application domain under
consideration planning speed is more important than plan quality, or vice versa.

Our tests are conducted on a series of variants of problems from different domains:

* BlocksWorld and Logistics Additionals (2nd International Planning Competition),
* DriverLog and ZenoTravel Strips (3rd IPC),
* Rovers-IPC5 and TPP Propositional (5th IPC).

These tests are generally performed by taking six problems from the benchmark test suite
in each case and then methodically generating a series of variants for those problems for a total
of 216 planning problems for each domain. In each case, we take three medium size problems
and three largest size problem instances as base problems,?? so as to make the question of case-

2'We use 10 minutes for OAKPLAN since many experimental tests have been conducted on it and a CPU limit
of 30 minutes has turned out to be computationally too expensive. However, as we will see in Table 1, the CPU
limit of 10 minutes is enough for OAKPLAN to solve more than 95% of the problems attempted and additional
CPU-time could only modify the number of solved problems, the plan quality and the difference values obtained
slightly.

28pecifically the base problems considered are for

* BlocksWorld Additionals: probBLOCKS-40-0, probBLOCKS-60-0, probBLOCKS-80-0, probblocks-100-
0, probblocks-120-1 and probblocks-140-1;

35

based planning versus replanning an interesting one.”> The variant problems are generated by
modifying the initial and goal facts of the original problem. These modifications are performed
randomly, although the number of modifications is increased systematically: we consider from
zero to five modifications of the goal set and from zero to five modifications of the initial
state.”*

Although we use only six base problems in each domain, we generate a large number of
variants and we consider problems from several domains, so these results can be considered
representative of the behaviour of the system for other similarly sized base problems. To con-
firm that the results are not an artifact of the particular problem instances chosen, we adopt a
different problem generation strategy for creating problem instances in the Logistics domain.
Thus we select problems randomly from the benchmark suites considering the “Additionals”
planning problems created in the 2nd IPC for the Domain Dependent planners, distributed
across the smallest and the largest problem instances, and generate variant problems for each
case. We use the same scheme as above to determine the combination of modification values
for the initial state and goals, but select the base problem to apply the modifications randomly.
The list of base problems selected for each domain and the random modifications applied are
described in Appendix B.

For each of the benchmark domains we build a case base library used by OAKPLAN. All
the problems generated in the different IPCs belong to these libraries. Using the problem
generators provided by the IPC organisers, a number of planning problems, with the same
features as the IPC planning problems considered, are generated and added to the libraries, for
a total of 10000 planning problems for each of the benchmark domains considered except TPP
where we only use the original IPC planning problems since it is not possible to use TLPLAN
to solve the planning problems of this domain; then we use SGPLAN-IPCS to determine the
solutions of the TPP planning cases.

In the following we report the summary results obtained by OAKPLAN considering (1)
case base libraries whose cases use the same objects as the planning problems in the test set, so
as to verify the system behaviour when the matching function of OAKPLAN could be simply
obtained by using the identity function (we add the suffix “Ons”, which stands for Original
object names, to the corresponding results as in OAKPLAN-Ons); (2) case base libraries where
the object names of the planning cases are randomly modified with respect to the objects of the
planning problems in the test set, to verify the system behaviour when completely new prob-
lems are provided to OAKPLAN (we add the suffix “Nns”, which stands for New object names,
to the corresponding results as in OAKPLAN-Nns); (3) case base libraries which contain only
the base problems used to generate the variants of the benchmark set (we add the suffix “small”

» Logistics Additionals Track2: randomly selected from logistics-16-0 to logistics-100-1;
* Driverlog: pfilel4, pfilel7, pfile20, pfile-HCO03, pfile-HCO6, pfile-HCO09;

* Zenotravel: pfilel4, pfilel7, pfile20, pfile-HC14, pfile-HC17, pfile-HC20;

» Rovers-IPC5: pfile35, pfile36, pfile37, pfile38, pfile39, pfile40;

» TPP: pfile25, pfile26, pfile27, pfile28, pfile29, pfile30.

ZFor small problems, the difference among these strategies is not particularly interesting except for the situation
in which the stability of the plan produced is fundamental.

*In the following experimental results when a planning problem is solved by OAKPLAN it is not inserted in the
case base but simply discarded.

36

Results for OAKPLAN-NNS
Domain Solutions Speed | Matching Time | Quality | Stability | Differences
BlocksWorld 187 (86%) | 214244.8 121535.6 346.0 0.92 49.6
Logistics 213 (98%) 88928.4 69606.3 390.2 0.88 76.6
DriverLog 197 (91%) | 112556.6 31107.4 230.2 0.91 23.6
ZenoTravel 211 (97%) 86722.1 34123.0 194.6 0.84 472
Rovers 214 (99%) 62421.3 53719.5 3744 0.98 11.4
TPP 210 (97%) 26837.8 859.2 308.8 0.96 20.9
TOTAL 1232 (95%) 96162.0 50777.4 307.8 0.92 38.2

Table 1: Results of OAKPLAN-Nns in the different domains: number of solutions found, average CPU-
time of the first solutions (in milliseconds) and corresponding average matching time, average best plan
quality, average best plan stability and average best plan differences.

to the corresponding results as in OAKPLAN-small).>> A more detailed comparison of the re-

sults produced in the different domains is available in Appendix C.

4.2 Overall Results

In this section we report the overall results of OAKPLAN considering the number of solutions
found, the CPU-time, the plan quality and the plan stability [22] of the solutions produced
by the adaptation process with respect to the plan obtained by the RETRIEVEPLAN function
(best_plan). While the first three terms are standard evaluation parameters commonly adopted
in planning, the plan stability deserves some additional considerations. The importance of plan
stability has been examined by Fox et al. [22] in the context of plan adaptation, where the
authors use the term plan stability to refer to a measure of the difference a process induces
between an original (source) plan and a new (target) plan. In [22] the plan stability is measured
considering the distance, expressed in terms of number of different actions, between the source
plan 7 and the target plan 7. In this paper we also consider an additional plan stability function
(o) derived by the formalisation presented by Srivastava et al. [77]:

o(m, mo) =1—(Im = mol , Imo 7])

|+ |mol [7] + ol

The second term represents the contribution of the actions in 7 to the plan stability, while the
third term indicates the contribution of g to 0. This function assumes a 0 value when the two
plans are completely different and a value equal to 1 when 7 and 7 have exactly the same
actions. From a practical point of view we think that plan stability can be quite important in
different real world applications. For example more stable plans offer a greater opportunity for
graceful elision of activities and less stress on execution components. Preserving plan stability
also reduces the cognitive load on human observers of a planned activity, by ensuring coherence
and consistency of behaviours, even in the face of dynamic environments [22]. Finally, in a
case-based approach, a high plan stability is a clear indicator that the system correctly selects
plans that can be easily adapted.

In Table 1 we present the results of OAKPLAN-Nns in the different benchmark domains.
Here we consider the average CPU-time and the Matching Time for the first solutions generated
(in milliseconds). In the fifth column we present the average plan quality of the best solution
generated in the different variants and finally the average plan stability and plan distance (in

»The number of cases of the plan libraries in the “small” tests is always lower than 15 except in the Logistics
domain where we consider 170 base planning problems.

37

Results for OAKPLAN-NNS-KBASE and percent errors of OAKPLAN-NNS-KBASE vs OAKPLAN-NNS
Domain Solutions Speed Matching Quality Stability Differences
BlocksWorld 68.0 (-64%) | 244907 (173%) | 122391 (198%) 330 (56%) | 0.71 (-19%) 280 (407%)
Logistics 123 (-42%) | 101027 (362%) 87582 (390%) 293 (14%) | 0.59 (-31%) 328 (415%)
DriverLog 157 (-20%) | 113622 (110%) 18982 (3.3%) 209 (19%) | 0.60 (-33%) | 98.9 (401%)
ZenoTravel 142 (-33%) | 142705 (252%) 51823 (176%) 191 (31%) | 0.25 (-69%) 161 (290%)
Rovers 216 (0.93%) 47931 (-25%) 38183 (-30%) | 374 (0.08%) | 0.97 (-0.7%) | 29.6 (136%)
TPP 198 (-5.7%) 73923 (198%) 928 (9.4%) 332 (9.4%) | 0.20 (-79%) | 76.5 (267%)
TOTAL 904 (-27%) | 101961 (122%) 41886 (69%) 293 (13%) | 0.55 (-39%) 132 (338%)
Table 2: Results of OAKPLAN-Nns-Kpqse VS OAKPLAN-Nns
Results for OAKPLAN-NNS-KNODE and percent errors of OAKPLAN-NNS-KNODE vs OAKPLAN-NNS
Domain Solutions Speed Matching Quality Stability Differences
BlocksWorld || 65.0 (-65%) 275902 (244%) | 147690 (317%) 317 (57%) | 0.41 (-54%) 293 (462%)
Logistics 103 (-52%) 129886 (620%) | 125599 (725%) 241 (7.8%) | 0.31 (-63%) 282 (320%)
DriverLog 108 (-45%) 54862 (353%) 46725 (553%) 94.6 (4.1%) | 0.07 (-91%) 137 (676%)
ZenoTravel 108 (-49%) 98908 (245%) 78695 (290%) | 96.6 (-2.5%) | 0.17 (-78%) 151 (267%)
Rovers 214 (0.0%) 36560 (-42%) 18985 (-65%) 346 (-7.5%) | 0.15(-85%) | 345 (2940%)
TPP 4.00 (-98%) | 502450 (10901%) 740 (24%) 520 (106%) | 0.20 (-79%) | 504 (2701%)
TOTAL 602 (-51%) 95935 (133%) 66690 (120%) 236 (3.3%) | 0.19 (-78%) 258 (708%)

Table 3: Results of OAKPLAN-Nns-X,,04c Vs OAKPLAN-Nns

terms of number of different actions) of the best solution produced with respect to the plan
obtained by the RETRIEVEPLAN function (best_plan). OAKPLAN-Nns solves 95% of the
problems attempted and the average difference with respect to the target plans is 38.2, i.e.
considering all the 1232 planning problems solved by OAKPLAN there are on average 38
actions introduced or removed with respect to the target plans which corresponds to a stability
of 92%. It requires 96 seconds to solve the different benchmark planning problems of which
51 seconds are required by the matching process. It is important to point out that more than
10000 cases belong to each plan library, which have to be considered by the matching process.
We think that such a high number of cases is hardly required by real applications: in fact case
base maintenance policies [75] could be used in real word applications in order to reduce the
number of cases that have to be handled by a case-based planner significantly.

In the following part of this section we examine the relevance of the kernel functions used
by OAKPLAN considering the [Cp,s. kernel function described in section 3.1.3 and a new
kernel function, that we call /C,,,4., Which simply uses the k, kernel function in equation (7)
and only compares the labels of the pairs of nodes considered. Finally we examine the influence
of the case base size on the system performance and how OAKPLAN performs when a planning
problem with the same objects names as the case base is considered.

4.2.1 Matching Functions

To verify the relevance of the matching functions used by our system, we compare OAKPLAN
with simpler matching functions; in particular we examine the system behaviour considering
the Cpqse and the ICyp, 4 kernel functions.

In Table 2 we compare OAKPLAN-Nns with one of its reduced versions called OAKPLAN-
Nns-Kp,se that avoids the computation of steps 3.z in the RETRIEVEPLAN procedure, i.e. the
best matching function is obtained only by considering the Kp,s. kernel function. In this

38

Results for OAKPLAN-NNS-ADAPT-KBASE and percent errors of OAKPLAN-NNS-ADAPT-KBASE vs OAKPLAN-NNS
Domain Solutions Speed Matching Quality Stability Differences
BlocksWorld 65.0 (-65%) | 172152 (117%) | 35607 (0.20%) 338 (67%) 0.44 (-49%) 294 (447%)
Logistics 178 (-16%) | 130661 (132%) | 45745 (0.43%) 411 (21%) 0.30 (-66%) 488 (574%)
DriverLog 157 (-20%) | 112493 (112%) 18328 (-0.1%) 209 (19%) 0.74 (-18%) | 99.0 (406%)
ZenoTravel 160 (-24%) | 156323 (198%) | 21714 (-0.2%) 214 (31%) 0.44 (-47%) 194 (347%)
Rovers 214 (0.0%) 63247 (1.3%) | 53737 (0.03%) | 375 (0.08%) | 0.96 (-2.1%) | 26.8 (136%)
TPP 203 (-3.3%) 79418 (225%) 858 (0.35%) 340 (11%) | 0.88 (-8.5%) | 86.7 (325%)
TOTAL 977 (-21%) | 109291 (112%) | 29153 (0.11%) 319 (16%) 0.67 (-27%) 180 (434%)

Table 4: Results of OAKPLAN-Nns-adapt-KCp,s. vs OAKPLAN-NnS

Results for OAKPLAN-NNS-ADAPT-KNODE and percent errors of OAKPLAN-NNS-ADAPT-KNODE vs OAKPLAN-NNS
Domain Solutions Speed Matching Quality Stability Differences
BlocksWorld 69.0 (-63%) 181379 (111%) | 36344 (0.08%) 348 (68%) | 0.42 (-52%) 314 (455%)
Logistics 181 (-15%) 133987 (133%) | 45543 (-1.0%) 410 (19%) | 0.18 (-80%) 523 (617%)
DriverLog 108 (-45%) 15154 (25%) 7146 (-0.2%) | 95.0 (4.7%) | 0.06 (-93%) 144 (716%)
ZenoTravel 126 (-40%) 109391 (169%) | 21098 (-1.0%) 139 (8.9%) | 0.09 (-88%) 223 (419%)
Rovers 214 (0.0%) 71984 (15%) | 53745 (0.04%) | 351 (-6.2%) | 0.19 (-81%) | 351 (2986%)
TPP 4.00 (-98%) | 437260 (9463%) 585 (-1.7%) | 518 (109%) | 0.19 (-81%) | 507 (3460%)
TOTAL 702 (-43%) 98775 (92%) | 36588 (-0.4%) 289 (11%) | 0.17 (-81%) 338 (781%)

Table 5: Results of OAKPLAN-Nns-adapt-/C,,,q. vs OAKPLAN-Nns

Table and in the following ones, we report the percent error in brackets?® with respect to
OAKPLAN-Nns where, except for the column of the solutions found, we consider only the
problems solved by both planners. By using this less accurate matching function the number
of problems solved is 904 (down 27%), the average CPU-time required is 101 seconds (up
122% considering only the problems solved by both systems) and, most important of all, a
plan difference of 132 actions (up 338%) and a plan stability of 0.55 (down 39%). Note that
the CPU-time required by the matching process increases significantly (plus 69%) since a less
accurate matching function determines a greater number of problems that have to be examined
by steps 4.2—4.7 of the RETRIEVEPLAN procedure.

In Table 3 we compare OAKPLAN-Nns with a relaxed version of it called OAKPLAN-
Nns-/C,,0qe Which avoids the computation of steps 3.z of the RETRIEVEPLAN procedure and
uses the /C,,,qe kernel function instead of the /Cpq e function at step 2.2. In this test we want to
examine the system behaviour when a very simple matching function is used. The number of
problems solved is 602 (down 51%), the CPU-time required to solve the planning problems is
95.9 seconds (up 133% considering the problems solved by both systems), the plan difference
is of 258 actions (up 708%) and plan stability is only 0.19 (down 78%). This clearly indicates
the extraordinary importance of an accurate matching function for the global system perfor-
mance, not only in order to obtain low distance values but also to solve a reasonable number
of planning problems.

In Tables 4 and 5 we examine the situation where the best planning case is selected by
the standard RETRIEVEPLAN procedure but the best_plan at step 4.7 is not identified by us-
ing the best matching function found until now but by applying the corresponding jipgse (7;) or
Linode (7;)*7 matching functions. The relating results are indicated respectively with OAKPLAN-
Nns-adapt-Ipqse and OAKPLAN-Nns-adapt-/C,,o4¢. In this way we provide the same planning

%Given two values a and b the percent error of a with respect to b is equal to ‘a‘;‘b‘ -100%. Since our values

are always positive we have not considered the absolute value in the previous formula and a negative percent error
indicates that a is less than b.

2"The fipqse matching function is computed using the KCpq s kernel function, similarly the fi,04. matching func-
tion is computed using the XC,, .4 kernel function.

39

Nns Nns—adapt—Kbase— Nns—Kbase Nns—adapt—Knode Nns—Knode
Cpu-time
Nns—adapt—Kbase
Nns—Knode Nns Nns—adapt—Knode——
Nns—Kbase
Plan Quality
Nns—adapt—Knode
Nns Nns—Kbase — Nns—adapt—Kbase
Nns—Knode
Plan
Distance

Figure 14: Partial order of the performance of OAKPLAN-Nns, OAKPLAN-Nns-/Cpqse, OAKPLAN-
Nns-/Cpr0de; OAKPLAN-Nns-adapt-/Cpq s and OAKPLAN-Nns-adapt-/C,, 4. according to the Wilcoxon
signed rank test for our benchmark problems.

case used by OAKPLAN-Nns to the adaptation process while the encoded solution plan (step
4.7 Figure 10) is obtained by using the Kp,se and Kp,o4e kernel functions. The number of prob-
lems solved increases considerably since the correct planning case is provided to LPG-adapt,
but the average CPU-time and the average plan differences remain significantly greater than
the corresponding ones of OAKPLAN-Nns. In particular OAKPLAN-Nns-adapt-Kp, s, deter-
mines an average plan distance of 180 actions (up 434%), while OAKPLAN-Nns-adapt-/C,, o4
determines an average plan distance of 338 actions (up 781%) and a plan stability of 0.17. The
plan distance values are even greater than the ones obtained in the previous tests essentially
because now the system is able to solve much more difficult planning problems.

We carried out a statistical analysis based on the Wilcoxon signed rank test [86] to under-
stand the significance of the performance gaps in the planners compared during the experi-
ments. The organisers of IPC-3 have also utilised this statistical test to study the performance
of the planners in the competition [56]. The data necessary to effect the Wilcoxon test are
obtained in the following way. The difference between the CPU-times of the two planners
compared is computed and the samples of the test for the CPU-time analysis are defined. The
absolute values of these differences are then ranked by increasing numbers, starting from the
lowest value. (The lowest value is ranked 1, the next lowest value is ranked 2, and so on.)
After that the ranks of the positive differences and the ranks of the negative differences are
summed respectively. Should it happen that the performance of the planners compared are not
very different, then the number of the positive differences is more or less equal to the number
of the negative differences. Moreover the sum of the ranks in the set of the positive differ-
ences is approximately equal to the sum of the ranks in the other set. From an intuitive point
of view, the test takes into consideration a weighted sum of the number of times one planner
performs better than the other. The test makes use of the performance gap to give a rank to
each performance difference, thus we say that the sum is weighted.

Figure 14 gives a graphical summary of the Wilcoxon results for the relative performance of
OAKPLAN-Nns with OAKPLAN-Nns-Kpgse, OAKPLAN-NnS-/Cp, 4., OAKPLAN-Nns-adapt-

40

Results for OAKPLAN-ONS and percent errors of OAKPLAN-ONS vs OAKPLAN-NNS
Domain Solutions Speed Matching Quality Stability Differences
BlocksWorld 213 (14%) 66831 (-73%) 10648 (-92%) | 335 (-7.3%) 0.98 (6.8%) 13.9 (-76%)
Logistics 211 (-0.9%) 33729 (-62%) 17804 (-74%) | 371 (-4.3%) 0.94 (6.8%) 31.7 (-59%)
DriverLog 199 (1.0%) | 112552 (-4.2%) | 29052 (-9.1%) | 233 (-0.1%) | 0.91 (0.27%) | 22.8 (-4.3%)
ZenoTravel 211 (0.0%) 39625 (-54%) 7989 (-77%) 178 (-8.8%) 0.91 (8.8%) 19.8 (-58%)
Rovers 214 (0.0%) 61688 (-1.2%) | 52975 (-1.4%) | 374 (-0.0%) | 0.98 (-0.1%) | 11.2(-1.3%)
TPP 211 (0.47%) 24537 (-13%) 748 (-13%) | 308 (-0.5%) | 0.97 (0.31%) 17.3 (-18%)
TOTAL 1250 (2.2%) | 55988 (-45%) | 19846 (-61%) | 301 (-3.2%) | 0.95 (3.6%) | 19.4 (-30%)

Table 6: Summary Table OAKPLAN-Ons vs OAKPLAN-Nns

Kpase and OAKPLAN-Nns-adapt-Kp, 4. in terms of CPU-time, plan quality and difference
values for our benchmark problems. 2 A solid arrow from a planner A to a planner B (or
to a cluster of planners B) indicates that the performance of A is statistically different from the
performance of B (every planner in B), and that A performs better than B (every planner in
B) with a confidence level of 99.9%. A dashed arrow from A to B indicates that A is better
than B with a confidence level of 99%. Here we can observe as expected that OAKPLAN-Nns
is statistically better than the other OAKPLAN variants both in terms of CPU-time and plan
distance values. Quite interesting we can note that OAKPLAN-Nns-/C,,,4. is statistically the
most efficient planner in terms of quality of the plans generated followed by OAKPLAN-Nns.
This can be explained by the fact that during the incremental adaptation process it has not been
able to reduce significantly the plan distance values but only the quality of the plans produced.

4.2.2 Object Names Renaming Analysis

In Table 6 we compare OAKPLAN-Ons and OAKPLAN-Nns. The CPU-time required by
OAKPLAN-Ons is lower than the CPU-time of OAKPLAN-Nns since the Kp,s. kernel func-
tion in OAKPLAN-Nns produces lower similarity values than in OAKPLAN-Ons, as we can
see more precisely in the following subsection. These lower values determine a greater num-
ber of cases that must be evaluated using XCas while the number of solutions produced and the
plan qualities are very close. On the contrary the difference values decrease considerably with
respect to the values of Table 1 (38.2 vs. 19.4): it is important to point out that with OAKPLAN-
Ons it has been possible to use the solution plans stored in the case base directly to compute
the distance values since these test problems and the planning cases have the same domain
objects. In particular while in DriverLog, Rovers and TPP the plans produced by OAKPLAN-
Nns and OAKPLAN-Ons are very similar, in BlocksWorld and Logistics the plans produced by
OAKPLAN-Nns are clearly worse than the corresponding ones produced by OAKPLAN-Ons
with respect to the difference values. In the BlocksWorld domain the main difficulties are re-
lated to the very simple typed encoding which sometimes does not allow our kernel functions
to easily identify the best object matching function. In this domain, the initial and goal state
descriptions are very homogeneous since all objects are of the same type “Obj” and this leads
to many different matching possibilities. As regards the Logistic domain, the main drawbacks
are related to the fact that sometimes some trucks are assigned to different cities with respect
to the original ones, unfortunately in this domain the trucks can be used only if they are posi-
tioned in specific cities and incorrect truck assignments could determine a high number of not
applicable actions.

Considering real word applications we think that the effective performance of OAKPLAN
should be placed between the results obtained by OAKPLAN-Nns and OAKPLAN-Ons. Al-

B Detailed results are reported in Appendix C at page 79.

41

Results for OAKPLAN-SMALL-NNS and percent errors of OAKPLAN-SMALL-NNS vs OAKPLAN-NNsS
Domain Solutions Speed Matching Quality Stability Differences
BlocksWorld 200 (6.9%) | 118823 (-56%) 1596 (-99%) | 359 (-0.3%) | 0.91 (0.12%) | 54.5 (-2.2%)
Logistics 214 (0.46%) | 30131 (-67%) | 11436 (-84%) | 392 (0.03%) | 0.88 (-0.1%) | 76.9 (0.37%)
DriverLog 205 (4.1%) 97810 (-28%) 4724 (-86%) | 242 (0.05%) 0.92 (1.7%) | 24.3 (-4.2%)
ZenoTravel 216 (2.4%) | 56226 (-39%) | 3146 (-:92%) | 196 (-0.4%) | 0.84 (0.55%) | 46.3 (-3.3%)
Rovers 216 (0.93%) 27221 (-56%) | 22527 (-58%) 374 (0.0%) 0.98 (0.0%) 11.3 (0.0%)
TPP 210 (0.0%) 26604 (-0.9%) 858 (-0.1%) 309 (0.0%) 0.96 (0.0%) | 20.9 (-0.1%)
TOTAL 1261 (2.3%) | 58584 (-47%) | 7502 (-85%) | 312 (-0.1%) | 0.92 (0.37%) | 39.0 (-1.4%)

Table 7: Summary Table OAKPLAN-small-Nns vs OAKPLAN-Nns

Ons

small—Ons small-Nns Nns

CPU-Time

small-Ons

Plan Quality

Ons =

. small-Nns Nns

Ons e e
‘ i small-Nns
small-Ons S e,

Plan Distance

Figure 15: Partial order of the performance of OAKPLAN-Nns, OAKPLAN-Ons, OAKPLAN-small-
Nns and OAKPLAN-small-Ons according to the Wilcoxon signed rank test for our benchmark problems.

though it is not realistic that all the current planning problem objects have to belong to the
case base, it is quite common that the domain topology does not change significantly during
the system evolution. For example, considering a department robotics domain where one or
more robots have to move some packages from different locations, it is reasonable that the de-
partment locations and the corresponding connections do not change significantly as time goes
by.

4.2.3 Case base size analysis

In Table 7 we compare OAKPLAN-small-Nns to OAKPLAN-Nns. We can observe that the
“small version” is clearly faster than the complete version since the number of cases is consid-
erably lower; OAKPLAN-small-Nns is able to solve 29 more problems than OAKPLAN-Nns
(up 2.3%) with an average CPU-time of 58.5 seconds (down 47% with respect to OAKPLAN-
Nns) and if we consider the matching CPU-time, it requires 7.5 seconds (down 85% with
respect to OAKPLAN-Nns). It follows that the number of problems solved, the plan quality
and the difference values are very close.

Figure 15 gives a graphical summary of the Wilcoxon results for the relative performance of
OAKPLAN-Nns, OAKPLAN-Ons, OAKPLAN-small-Nns and OAKPLAN-small-Ons in terms

42

of CPU-time, plan quality and difference values for our benchmark problems.?® Here we can
observe that the use of case bases with the same objects names as the test set (“Ons” variants)
reduces the CPU-time required to find a solution, the plan quality and the plan stability of the
plans produced. As expected the “small” variants are faster than the corresponding variants
with huge case bases. Moreover OAKPLAN-small-Nns is statistically better than OAKPLAN-
Nns in terms of plan distance values since it can devote much more CPU-time to the incremen-
tal adaptation process.

Hence we can observe that OAKPLAN is significantly faster and solves more problems
when it runs on small rather than large case bases, with only minimal impact on solution qual-
ity, stability and differences. This clearly indicate the importance in CBP of developing highly
scalable retrieval mechanisms to analyse efficiently the case base, in fact all CBP systems have
at least a retrieval component, and the success of a given system depends critically on the effi-
cient retrieval of the right case at the right time. In this paper we consider a relatively simple
screening procedure that filters out efficiently irrelevant cases; moreover our procedure could
be combined with other retrieval techniques based on a model of case competence [75, 79] so
as to improve the global system efficiency, which is left as future work.

Here we examine the CPU-time (in seconds) required by the different phases of OAKPLAN-
Nns vs. the number of elements in the corresponding case base considering some specific
benchmark planning problems. In particular in Figures 16-17 we show the cumulative CPU-
time required by the different phases of OAKPLAN-Nns; the CPU-times can be simply derived
by considering the distance of the corresponding line from the previous one. So we can obtain
the CPU times required:

1. by the preprocessing phase so as to instantiate the data structures used by OAKPLAN,
compute the mutex relations, connect to the case base and load the objects and predicated
indexes;

2. by the screening procedure to retrieve the degree sequences from the case base and com-
pute the simil®® values (steps 1.4 — 1.7 of the RETRIEVEPLAN procedure);

3. by the planning encoding graph retrieval procedure and the computation of the Cpgse
kernel function on the cases selected in the previous phase (steps 2.1 — 2.4 of the RE-
TRIEVEPLAN procedure);

4. by the computation of the KCxs kernel function and the corresponding matching func-
tion on the cases selected in the previous phase (steps 3.1 — 3.5 of the RETRIEVEPLAN
procedure);

5. by the evaluation of the selected plans so as to define the corresponding adaptation cost
(steps 4.2 — 4.7 of the RETRIEVEPLAN procedure);

6. by the LPG-adapt system to find a first solution; the adaptation time can be obtained
by the difference between the Toral time required to find a first solution and the total
Evaluation time.

Here we can observe that the screening procedure is extremely fast and the CPU-time re-
quired by the preprocessing and evaluation phases is always limited. Quite interesting in the
BlocksWorld variant the CPU-time required by the ICnr computation is particularly relevant
since the Ky, s kernel function is not precise enough to filter out a significant number of cases.
In fact, in this domain, a correct matching of the objects of two different planning problems
is particularly difficult since all the objects are of the same type called “Obj” as exposed pre-
viously. We can also observe in the BlocksWorld variant that the CPU-time required by the

P Detailed results are reported in Appendix C at page 88.

43

Driverlog-Strips-pfile26 problem

Driverlog-Strips-pfile26-15-G5 problem

CPU time CPU time
110 T T T — T ¥ T 400 T T T T T
—t Preprocessing %
100 Screening B
R Kemel Base 1 o uadtums sl 350
9 ° Malchmgﬁj!k* |
Evaluati 300 [Evaluation 1
0 R Total] Total time
p 250 + 1
70 9
,J*"’"‘JC 200 E
60 o i
e
o 150 [1
50 s 1
Y
| o2] 100
N
%0 :* - WWWMWMWWWMM”*WW 50 g
20 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Case Base size Case Base size
Rovers-Strips-1PC5-casebase-el ements-pfile40-0-10-GO problem Rovers-Strips-| PC5-casebase-el ements-pfile40-0-15-G5 problem
CPU time CPU time
180 . . — 70 . . —
— Preprocessing — Preprocessing
160 Screenlng o - SCTEG’]II]Q Soeteste®
ke Kernel Base os® 60 Kemg_a-ehe P 1
L a Matching f] a chi —
140 Evaluation ﬁ 50 L EVaJu 115?1“..,,....-#"“)H%M o |
120 .- Total time g.!p;ﬁ | Ve ..&......w"j{j ime R
. . e
100 {1 0 fape 1
9
RIRRAK
80 T 30 F W*W M |
wr 1 2 et R
40 5 1 K
20 L | 10 + R
T
b e f f f f [| | | | | | | | |

0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Case Base size Case Base size
ZenoTravel-Strips-casebase-el ements-pfile-HC20-0-10-GO problem ZenoTravel-Strips-casebase-el ements-pfile-HC20-0-15-G5 problem
CPU time CPU time
45 T r T - T 500 T o T — T T
— eprocessing — eprocessing -
Screening 450 + Screening .._p"'w'\'.'" f~."-m~
40 e Kernel Base 2 oadout w Ry Kernel Basgun™
0 = Matching 20 ’HNE L Y Y 200 JJNANTNS, ng R
e i : Evaluation
e B ™ * | 30 [e Total time 1
35 o LAC
300 q
30 q 250 q
200 q
25 - q 150 -]
i o e B R v P e
20 f” S g gt O 1 wor
50 4
15 L L L L L L O L \v L L L -
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
CaseBasesize CaseBasesize

Figure 16: Cumulative CPU-times (seconds) required by the different phases of OAKPLAN-NnS vs.
the number of planning cases of the case base.

matching phase stabilises when the case base size is nearly of 5500 cases. This is caused by
the maximum number of cases that can be examined at step 2.1 of RETRIEVEPLAN. Besides
in the Rovers domain the CPU-time required to find a first solution plan is always very limited
and in this case the CPU-times for the computation of the Kp,s. and ICps kernel functions are
comparable. In the DriverLog and in the ZenoTravel domains the matching and evaluation
times are clearly dominated by the CPU-time required to find a first solution. Finally note that
the first solution produced by LPG-adapt simply represents the first step of a potentially much
longer incremental process.

44

BLOCK S-4ops-pfile-probblocks-140-1-14-G4 problem Driverlog-Strips-pfile26-15-G5 problem

CPU time CPU time
700 . . — 400 . . — ‘
— Preprocessing — Preprocessing, o # %t 2% see oo gt o0 00 00 o090 o
Screening PP PR L INGVYY Wy il i ee % b s eeed
600 | koo Kernel Base -~ 1 350 *KemnelBaset te T W e e i T e
@ Matching . 4 #* Matching
500 | Evaluation, »* R " 300 7/ Evaluation 1
e Total tjgwe " ST b Total time
o - 250 + 4
o -
400 e - 1
W 200 | |
300 ‘.»“ H;H—H 4
e o 150 - 4
oo® -
2 4
ol 100
- ;
100 put o X oRx —wmﬁw(': 50
0

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Case Base size Case Base size
Rovers-Strips-1PC5-casebase-el ements-pfile40-0-15-G5 problem ZenoTravel-Strips-casebase-el ements-pfile-HC20-0-15-G5 problem
CPU time CPU time
70 ; ; — 500 ; ; — ; ;
— Preprocessing — Preprocessing s N
60 Screening sestosses 450 Screening NN S e mtnposnme
[Kerng prse Py b o A Kernel B asgu ™
N POk ‘1‘:%5 oo : 400 MAEETNY, ng f
50 | P Y Wt | Evaluation
Csebisienees”’ TofAl time I 350 e Total time 1
o o~ = 300 |]
40 g b
-]
L 250 L 4
L ,]
30 [ool 200 I]
20 M i 150)
b 100 +
10 | R
50 4
0 ! | 0 | . . | .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 2000 4000 6000 8000 10000 12000 14000
Case Base size Case Base size

Figure 17: Cumulative CPU-times (seconds) required by the different phases of OAKPLAN-NnS vs.
the number of planning cases of the case base.

At last, we can observe a drop in the CPU-time required for the computation of the kernel
functions in the Rover domain in Figure 17 when the case base size is close to 4000 cases.
This drop is related to an insertion in the case base of a planning case with a high simil®
screening value when the case base size varies from 3900 to 4000 instances. This screening
value determines a new best_ds_simil value and consequently the number of cases that satisfy
the constraint “best_ds_simil — simal; < limit” at step 2.1 of Algorithm RETRIEVEPLAN at
page 26 decreases from 600 to 250. So the number of Planning Encoding Graphs that have to
be loaded and the number of kernel functions that have to be computed is clearly less than the
previous iteration and thus the corresponding CPU-time required for their computation.

4.3 Matching Functions Similarity Results

Here we examine the similarity values obtained with the Neighbourhood kernel function Cyr,
the Base kernel function Ky, the K, 4. kernel function and the direct matching function
produced by OAKPLAN for the hardest problems of our benchmarks in relation to a progressive
renaming of the domain objects involved. In this way we analyse the effectiveness of our
matching processes in comparison to a “direct matching” process simply based on the object
names of the planning problems.

In Figures 18-19 we can see how the initial similarity values of the matching functions are
equal to 1 for the plots on the left which correspond to the original problems in the case base

45

BlocksWorld-BLOCK S-4ops-pfile-probblocks-140-1-10-GO problem

Similarity
1 e
09 | 9
08 | 9
0.7 | 9
06 | 9
05 R
04 R
03 9
02 9
Kernel Base Similarity
01 Kernel node Similarity b
0 S ‘ pirect Smilariw ‘ ‘
0 20 40 60 80 100 120 140 160
Objects
Logistics-Track2-problogistics-98-1 problem
Similarity
1 X
% Hs
% e,
o M
06 |
04
02 —— Kernel Similarity 4
e Kernel Base Similarity
*- Kernel node Similarity
o a ‘ Direct Similarity‘
0 50 100 150 200 250
Objects
DriverLog-Strips-pfile29 problem
Similarity
1 eoms
0.9 9
0.8 9
0.7 9
0.6 9
0.5 R
0.4 R
0.3 9
0.2 Kernel Similarituy,, 1
e Kernel Base Similarity
01 % Kernel node Similarity 1
o a ‘ ‘ Direct Smilaity
0 50 100 150 200 250 300
Objects

BlocksWorld-BLOCK S-4ops-pfile-probbl ocks-140-1-15-G5 problem
Similarity
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
Kernel Base Similarity

0.1 *- Kernel node Similarity 1
0 o) I?irectSirpiIarity ‘ -
0 20 40 60 80 100 120 140 160
Objects

Logistics-Track2-pfile-logistics-98-1--15-G5-n4 problem
Similarity

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2 Kernel Similarity

Kernel Base Similarity

01| % Kernel node Similarity
o a ‘ Direct Similarity ‘
0 50 100 150 200 250
Objects
DriverLog-Strips-pfile29-15-G5 problem
Similarity
02 —— Kernel Similaritie, 1
e Kernel Base Similarity
01 % Kernel node Similarity 1
o a ‘ ‘ Direct Sirpilarity
0 50 100 150 200 250 300
Objects

Figure 18: Similarity values for the Neighbourhood kernel function, the Base kernel function, the
Krode kernel function and the direct matching for the hardest problems in the BlocksWorld, Logistics
and DriverLog domains.

46

ZenoTravel-Strips-pfile-HC20-0-10-G0 problem ZenoTravel-Strips-pfile-HC20-0-15-G5 problem

Similarity Similarity
E 1y
b 0.9 % g
*
08 = — 08 % g
N 0.7 %iz%« M 1
06 | 9 06 | Qe?a 9
05 9
04 B 04]
03 9
02 —— 1 02 —— Si q
Kernel Base Similarity Kernel Base Similarity
ke Kernel node Similarity 01| - Kernel node Similarity 1
0 o) Direct Similarity) i} 0 o) Direct Similarity)
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Objects Objects
Rovers-Stripsl PC5-pfile40-0-10-GO problem Rovers-Stripsl PC5-pfile40-0-15-G5 problem
Similarity Similarity
1 o S S
% % 09 %]
08) = 08 R "
8 !] 8 %]
%%E %*Wm o7l EAPAEE S, ‘ |
e -
06 m@gﬂ% . g 06 %ﬂ%% ' g
i Y 05 % Mm]
% i
04t % 1 04t % 1
03 9
02 —— Kernel 9 02 —— b
Kernel Base Si Kernel Base Si
ek Kernel node Similari 01 %o Kernel node Similari 1
0 e) __ Direct Similarity 0 e) __ Direct Similarity o
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Objects Objects
TPP-Strips-pfile30-10-GO problem TPP-Strips-pfile30-15-G5 problem
Similarity Similarity
1 i * H*; t , , , . . 1 ,,ﬁﬁéﬁw;«, T
iy * 09 r . 1
08| a *HHH*H**MHHMH*HM* | 08 :**H**H** |
0.7 | 9
06 | 9 06 | 9
05 9
04 4 04 + 4
03 9
02 —%DD“DDD Kernel Similarity R 02 —%DD“DDD Kernel Similarity g
“ckernel Base Similarity “ekernel Base Similarity
—_— Kernelriote Sitftarity o o, 01| % Kernelriode Sitfiitarity s o , 1
ol , , DiretSmilaity, “Yeovogaq,,, ol—®~ , , PDiretSmilaity, “90vogaq,,,
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Objects Objects

Figure 19: Similarity values for the Neighbourhood kernel function, the Base kernel function, the
Krode kernel function and the direct matching for the hardest problems in the ZenoTravel, Rovers-
StripsIPC5 and TPP domains.

and close to 1 for the plots on the right where we change 5 initial facts and 5 goal facts with
respect to the corresponding element of the case base. As expected the similarity value of the
direct matching progressively reduces itself to zero, whereas the similarity value of the Cxs
kernel function always remains greater than 0.9, in particular it shows excellent performance
in DriverLog, Rovers and TPP. If we consider the Kp s and K,,0qc kernel functions we can see
that the corresponding similarity values progressively decrease with the increase of the number
of renamed objects. This is acceptable and not crucial for OAKPLAN since the Ky, function

47

Plan similarity values of Neighb. Kernel
1 =

i T T =T T TS R S
' WOt Rty f*ﬁﬁ‘
+ + L
N i ﬁﬁ#ﬁﬁﬂ@t 35} . 3;} -
v T F o T Ht T
0.95 - £y, O e 8
& T + RS TP g
¥ R
+ oy + o
+ + .7+ it O 4+ +
L o+]
0.9 b f PR -
+T g +
+ o TH +
+
£ 4 +
0.85 i, H E
+ +
4
0.8 | e
0.75 .
0.7 .
0.65 E
Neighb. Kernel vs Base Kernel ~ +
06 1 1 1 1 1 1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Plan similarity values of Base Kernel

Figure 20: Plan similarity values of KCar vs. Kpgse

is essentially used in order to reduce the number of cases that must be evaluated accurately
with Cas. Considering the plots on the left, which are associated to the original problem in the
case base, we can observe that the simil,,,. values are always equal to 1, showing that Ky is
able to match all the planning problem objects correctly. Moreover it is interesting to note that
also KCpqse performs extremely well in the DriverLog, Rovers and TPP domains.

Finally it is interesting to observe that sometimes the similarity values slightly increases at
the increase of the number of renamed objects and this is due to the v coefficient introduced,
as explained previously, in the kernel function in order to guarantee a “greater stability” in the
activity assignment which is useful expecially when human agents are handled by the planner.

In order to examine /s and Ky, more accurately, in Figure 20 we compare their simi-
larity values for all our 1296 benchmark problems using the corresponding case base with all
the objects renamed so as to verify the system behaviour when completely new problems are
provided to OAKPLAN. Each point corresponds to the similarity values produced by K s and
Krase- If a point is above the solid diagonal, then s performs better than Kp,s and vice
versa. Here we can see that Cys always performs better than Kp,s. and in only 38 variants
simily, . is less than 0.9. It is also important to point out that in all our experiments we obtain
a similarity value equal to one for all the test variants in which there is no modifications with
respect to the initial and goal facts (which correspond to the /0 — GO instances). In fact these
planning problems are already “present” in the case base and OAKPLAN identifies a mapping
that correctly assigns all the objects of the selected planning case to the objects of the current
planning problem.

48

Similarity values

1r ? : 1
08 i
06 |
04]
021 OAKplan-Nns i

OAKplan-Nns-Kbase & d
0 OAKplan-Nns-Knode . . .

0 1 2 3 4 5
Initial & Goal facts changes

Figure 21: Box & Whiskers plots of the similarity values produced using ICpr, Kpase and K, oqe kernel
functions in the different benchmark planning problems considering different number of initial and goal
changes.

In Figure 21 we can examine the Box & Whiskers plots *° of the similarity values produced
using the KCpr, Kpgse and K, 0qe kernel functions. These results are grouped considering the
test set problems with the same number z of initial and goal changes (Iz-Gz variants), this
number is reported on the x-axis. Here we can observe that the KCxr kernel function produces
high similarity values with a standard deviation which is clearly smaller than the other kernel
functions. In particular if we consider the 10-GO0 variants the results produced are very close to
1‘31

4.4 OAKPLAN vs. State of the Art Planners

In this section we analyse the OAKPLAN behaviour with respect to four state-of-the-art plan-
ners, showing its effectiveness in different benchmark domains; in particular, we consider
METRIC-FF (winner of the 2nd IPC), LPG (winner of the 3rd IPC), DOWNWARD (1st Prize,
Suboptimal Propositional Track 4th IPC) and SGPLAN-IPCS5 (winner of the 5th IPC).

In Figure 22 we graphically report the number of solutions found, the average CPU-time
of the solutions of DOWNWARD, METRIC-FF and SGPLAN-IPC5 and the CPU-time of the

A Box & Whiskers plot is a convenient way of graphically depicting groups of numerical data; the central box
represents the values from the first to the third quartile (25 to 75 percentile). The middle line represents the median;
the horizontal line extends from the minimum to the maximum value, excluding outside values. An outside value
is defined as a value that is smaller than the lower quartile minus 1.5 times the interquartile range, or larger than the
upper quartile plus 1.5 times the interquartile range (inner fences).

3! Additional results are reported in Appendix C on page 131.

49

mmmm Downward —— OAKplan-Nns-Kbase
s | PG mmmmm OAK plan-small-Nns

m— \ etric-FF = OAKplan-small-Ons Speed (Milliseconds)
mmmm SGPLAN-IPC5 mmmm OAKplan-Nns 500000
3 OAKplan-Nns-Knode = === OAKplan-Ons
450000
Number of Solutions 400000
1400
350000
1200
300000
1000
250000
800 200000
600 150000
400 100000
200 50000
0 0
Differences Quality
400 350
350 300 7
300
250
250]
200
200
150
150
100
100
50 50
. Bl =

Figure 22: Summary results.

first solutions®? of LPG and OAKPLAN. Then we consider the average plan difference values
expressed as the number of different actions with respect to the solution produced by the cor-
responding planner on the problems used to generate the variants and the average best plan
quality of the solutions generated by considering all benchmark domains.

Here we can see that OAKPLAN can solve the greatest number of variants, followed
by SGPLAN-1PC5 and LPG. Regarding the CPU-time, we remark that DOWNWARD, LPG
and OAKPLAN present similar computation time, while the CPU-time is more significant in
METRIC-FF and SGPLAN-IPC5. However these average values are computed only by con-
sidering the problems solved by every single planner. In this case the SGPLAN-IPCS5 planner
solves 211 variants in the TPP domain requiring 942 seconds for them, whereas these vari-
ants only marginally influence the results of LPG. Regarding the difference values we can see
that OAKPLAN clearly produces better results than the other planners. With respect to the
plan quality we can note that METRIC-FF gives better results whereas OAKPLAN produces
the worst results. We would like to point out that in OAKPLAN the optimisation process tries
to balance between good quality and low distance values since we are much more interested
in generating a plan with a limited number of differences with respect to the target plan than
producing solutions of good quality. Moreover OAKPLAN is able to solve much more diffi-
cult planning problems than the other planners and these solutions weigh significantly on the
average plan quality produced.

In Table 8 we report the summary results of OAKPLAN-Nns compared to the other plan-
ners. In the second columns we report the number of the solutions found by the other planners,

*2Considering the median ones over five runs.

50

Results for DOWNWARD and percent errors of DOWNWARD vs OAKPLAN-NNS
Domain Solutions Speed Quality Stability Differences
BlocksWorld 64.0 (-66%) | 474335 (+437%) | 572 (+155%) | 0.60 (-32%) 375 (+634%)
Logistics 198 (-7.0%) 93899 (+19%) | 353 (-4.8%) | 0.66 (-24%) | 242 (+217%)
DriverLog 76.0 (-61%) 41738 (+381%) 78.8 (+14%) | 0.45 (-46%) 91.6 (+447%)
ZenoTravel 130 (-38%) 54752 (27%) | 128 (-23%) | 0.58 (-29%) | 85.7 (+72%)
TPP 211 (+0.47%) | 148591 (+444%) 293 (-5.1%) | 0.45(-53%) | 315 (+1403%)
TOTAL 679 (-45%) | 133420 (+141%) 281 (+5.9%) | 0.55 (-38%) 230 (+411%)
Results for LPG and percent errors of LPG vs OAKPLAN-NNS
Domain Solutions Speed Quality Stability Differences
BlocksWorld 73.0 (-61%) 94078 (+4.3%) 238 (+12%) | 0.71 (-19%) 149 (+160%)
Logistics 211 (-0.9%) 139416 (+58%) | 451 (+16%) | 0.60 (-31%) 396 (+413%)
DriverLog 122 (-38%) 108708 (+412%) | 127 (+6.8%) | 0.32 (-63%) 199 (+956%)
ZenoTravel 216 (+2.4%) 174570 (+95%) | 202 (+2.3%) | 0.25 (-70%) 332 (+591%)
Rovers 216 (+0.93%) 19440 (-69%) | 335 (-11%) | 0.18 (-82%) | 489 (+4201%)
TPP 2.00 (-99%) | 496110 (+41415%) 393 (+69%) | 0.40 (-60%) | 468 (+46650%)
TOTAL 840 (-32%) 110054 (+52%) | 291 (+3.8%) | 0.37 (-58%) 354 (+734%)
Results for METRIC-FF and percent errors of METRIC-FF vs OAKPLAN-NNS
Domain Solutions Speed Quality Stability Differences
Logistics 171 (-20%) 307669 (+429%) | 304 (-8.0%) | 0.69 (-20%) 196 (+163%)
DriverLog 65.0 (-67%) 35598 (+345%) | 72.2 (+16%) | 0.19 (-77%) 124 (+655%)
ZenoTravel 164 (-22%) 219264 (+200%) 123 (-29%) | 0.57 (-30%) 97.0 (+98%)
Rovers 198 (-7.5%) | 745702 (+1089%) 299 (-19%) | 0.16 (-84%) | 391 (+3366%)
TPP 77.0 (-63%) | 899049 (+7054%) | 246 (-3.9%) | 0.51 (-47%) | 240 (+1202%)
TOTAL 675 (-45%) 455941 (+757%) 229 (-15%) | 0.44 (-51%) 227 (+500%)
Results for SGPLAN-IPCS5 and percent errors of SGPLAN-IPCS vs OAKPLAN-NNS
Domain Solutions Speed Quality Stability Differences
Logistics 216 (+1.4%) 462093 (+404%) | 414 (+4.6%) | 0.68 (-22%) 268 (+246%)
DriverLog 106 (-46%) | 321346 (+2538%) 119 (+31%) | 0.18 (-79%) 190 (+971%)
ZenoTravel 180 (-15%) 171353 (+126%) 142 (-23%) | 0.53 (-36%) 137 (+175%)
Rovers 216 (+0.93%) 163457 (+162%) 343 (-8.4%) | 0.15(-84%) | 467 (+4011%)
TPP 211 (+0.47%) | 942278 (+3414%) | 314 (+1.6%) | 0.41 (-57%) | 354 (+1593%)
TOTAL 929 (-25%) | 429328 (+644%) | 288 (-2.4%) | 041 (-55%) | 300 (+710%)

Table 8: Summary Tables of the different planners examined and a comparison with respect to the
corresponding results produced by OAKPLAN-Nns.

in the third columns we report the average speed of the problems solved (in milliseconds), then
the average plan qualities produced and finally the average plan stability and the average plan
differences with respect to the solutions of the set of target plans produced by every single
planner. In the brackets we report the percent errors with respect to OAKPLAN-Nns: we con-
sider only the problems solved by both planners for this comparison, except for the column of
the solutions found.

Downward cannot solve any problem in the Rovers domain. Globally it can solve 679 prob-
lems in comparison with the 1232 solved by OAKPLAN-Nns. DOWNWARD is 141% slower
than OAKPLAN-Nns while their plan quality is comparable. The distance values of the plans
generated by DOWNWARD with respect to the solutions produced by the same planner on the
problems used to generate the variants is 411% greater than OAKPLAN-Nns. This high value
is not particularly surprising since DOWNWARD and the other planners do not know the target
plans used for this comparison. Moreover the search processes and the solution plans produced
by a planner could be significantly different also for two planning instances that only differ in
a single initial fact. These distance values are interesting since they are a clear indicator of the
good behaviour of OAKPLAN and show that the generative approach is not feasible when we
want to preserve the stability of the plans produced.

51

Downward
OAKplan—Nns LPG —Metric—FF
SGplan—IPCS5

Cpu—time
Downward LPG
Metric—FF <
SGplan—IPC5 OAKplan—Nns
Plan Quality

Metric—FF

OAKplan—Nns SGplan—IPC5 LPG

Downward

Plan Distance

Figure 23: Partial order of the performance of OAKPLAN-Nns, DOWNWARD, LPG, METRIC-FF and
SGPLAN-1PCS5 according to the Wilcoxon signed rank test for our benchmark problems.

LPG can solve 840 of the 1296 variants, requiring 32% CPU-time more than OAKPLAN-Nns
and the average distance of the solutions on target planning problems is 354 actions (which
corresponds to +734% with respect to OAKPLAN-Nns). It is interesting to remark that the
CPU-time needed by LPG to solve the Rovers variants (19.4 seconds) is significantly lower
than in OAKPLAN (62.4 seconds) due to the additional CPU-time required by the matching
process of OAKPLAN-Nns (53.7 seconds). The distance of the plans generated by LPG in this
domain is 4201% greater than OAKPLAN-Nns.

Metric-FF cannot solve any variant in the BlocksWorld domain. Globally it can solve 675
problems and is 757% slower than OAKPLAN-Nns while its plan quality is 15% better. Finally
the distance of the plans generated by METRIC-FF with respect to the solutions produced by
the same planner on the target problems is 500% greater than OAKPLAN-Nns.

SGPlan-ipcS5 planner can solve 929 problems and is 644% slower than OAKPLAN-Nns, the
plan qualities are very similar and considering the distance of the plans generated by SGPLAN-
IPCS5 are on average 710% greater than with OAKPLAN-Nns.

Figure 23 gives a graphical summary of the Wilcoxon results for the relative performance
of OAKPLAN-Nns with DOWNWARD, LPG, METRIC-FF and SGPLAN-IPCS in terms of CPU-
time, plan quality and difference values for our benchmark problems.*® Here we can observe
that OAKPLAN-Nns is statistically more efficient values than all the other planners in terms of
CPU-time and plan distance. On the contrary OAKPLAN-Nns and LPG produce statistically
worse plans from the quality point of view than the other planners, while METRIC-FF produces
the highest quality plans.

*Detailed results are reported in Appendix C at page 89.

52

Globally we can note that OAKPLAN-Nns is able to solve many more problems than the
other planners and the first solution is usually generated in less time. In addition the distance
values are significantly lower with respect to the target plans although the quality of the plans
produced is slightly worse than that of the plans produced by the other planner; this is also
related to the optimisation performed by OAKPLAN where we try to minimise not only the
plan quality but also the distance with respect to the solution plan of the planning case selected.

In Figures 24-26 we analyse the CPU-times, plan qualities and plan differences of each
planner in the different domains considered in more detail. In general we can note that the
majority of the variants where a planner is faster than OAKPLAN-Nns are the smallest in the
different domains, where the overhead of the matching phase of OAKPLAN-Nns is proportion-
ally more significant; for example in the Logistics and DriverLog domains the other planners
are faster than OAKPLAN-Nns for the first 50 variants, while after these small variants the
gap between OAKPLAN-Nns and the other planners progressively increases. Moreover in the
Rovers domain the planning encoding graphs of the different planning problems are hefty and
the corresponding comparison is particularly demanding in terms of CPU-time; in fact in this
domain LPG is always faster than OAKPLAN-Nns. The plan qualities produced by the differ-
ent planners are very similar except for a very limited number of variants where DOWNWARD
performs badly with respect to OAKPLAN-Nns. Finally, considering the distance values we
can note the good behaviour of OAKPLAN-Nns which in all but a limited number of cases
performs better, with distance values which can be one order, and sometimes two orders, of
magnitude better than those of the other planners. It is interesting to observe that, in a limited
number of variants, the other planners produce better plans than OAKPLAN-Nns with respect
to the distance values. This could be quite easily justified since nothing prevents a planning
process from examining the same portion of the search space and to produce similar output
plans when a variant is quite similar to the target planning problem used for its generation.
Globally we can observe that, except for the simplest variants that are characterised by a lim-
ited number of actions in the solution plans, the gap between OAKPLAN-Nns and the other
planners progressively becomes more and more significant as the problems become more dif-
ficult, except perhaps in the Rovers domain where the distance values of the other planners are
always extremely significant.

Finally in Figure 27 we can observe the cumulative distribution of the total number of vari-
ants solved by the different planners vs. time. OAKPLAN-Nns is able to solve 1263 variants
considering a maximum CPU-time of 1800 seconds even if most solutions are found in the first
800 seconds. A similar behaviour can be observed considering the LPG and DOWNWARD plan-
ners although they are able to solve a lower number of variants. On the contrary METRIC-FF
and SGPLAN-IPCS5 show a constant increment of the number of variants solved, which are in
any case less than the variants solved by OAKPLAN. The CPU-time limit of 1800 seconds is
used in the International Planning Competitions for the competitors evaluation and we think
that it is adequate for the evaluation of the planners used in practical applications.

S Related Work on Case-Based Planning

In the following section we examine the most relevant case-based planners considering their
retrieval, adaptation and storage capabilities. Moreover, we present an empirical comparison of
the performance of OAKPLAN vs. the FAR-OFF system and some comments on the advantages
of OAKPLAN with respect to other case-based planners.

53

OAKplan-Nnsvs LPG vs Downward -- Domain : Blocksworld Logistics Domain

Milliseconds Milliseconds
le+08 ; T T le+08 7 T T
—+— OAKplan-Nns (Speed - 187 solved) —+— OAKplan-Nns (Speed - 213 solved)
- LPG (Speed - 73 solved) - LPG (Speed - 211 solved)
————— - Downward (Speed - 64 solved) 1e+07 % Downward (Speed - 198 solved) E
le+07 | 7 @ Metric-FF (Speed - 171 solved)
1e+06 | SGPlan-1PC5 (Speed - 216 solvj@d?ﬂsﬁmmj i il il
LI Ly
ks {ol
1e+06 £ 100000 | oo 4
10000 F ﬁi%w :
100000 \ o
W\/@g&m M
; 1000 fgmet™? 5]
10000 o)
100 |]
1000 10
50 100 150 200 50 100 150 200
Problem number Problem number
Plan distance Plan distance
¥ 1000

800 ! 900
1 800

100
Problem number Problem number
Quality Quality
1400 1000
900
1200 + e B
1000 - P 1 700t
800 600 1
500
600 200 -
300
200
200
100 {0
0 0
50 100 150 200
Problem number Problem number

Figure 24: CPU-time (on a logarithmic scale), number of different actions and plan qualities for
the BlocksWorld and the Logistics variants. Here we examine OAKPLAN-Nns, DOWNWARD, LPG,
METRIC-FF and SGPLAN-IPCS.

54

DriverLog Domain ZenoTravel Domain

Milliseconds Milliseconds
le+08 ; T T le+08 T T T
—+— OAKplan-Nns (Speed - 196 solved) —+— OAKplan-Nns (Speed - 210 solved)
- LPG (Speed - 122 solved) - LPG (Speed - 216 solved)
le+07 | o *-- Downward (Speed - 76 solved) 1 1et07 | > Downward (Speed - 130 solved) |
e Metric-FF (Speed - 65 solved) @ Metric-FF (Speed - 164 solved)
1e+06 | SGPlan-IPC5 (Speed - 106, solved)] SGPlan-1PC5 (Speed - 180 solved)
KRR [v Bg.g
o i \\ 1e+06 iy
g R
100000 A PSS
100000 |
10000 E
: 10000 E
1000 L i E
Ki < D,
100 g s] 1000 |
10 i L L L L 1m L L L L
50 100 150 200 50 100 150 200
Problem number Problem number
Plan distance Plan distance
700
800 I i X X | 600 [
700 | i g
| 500 .
600 | 1
400 + 1 300 F
200 +
1 L kB 2. TR
i B
‘ 0 ﬁ%@ﬁ;@%ﬁ
150 200 50 100 150 200
Problem number Problem number
Quality Quality
600 400

350
300
250
200
150
100

50 = s

0
50 100 150 200

Problem number Problem number

Figure 25: CPU-time (on a logarithmic scale), number of different actions and plan qualities for
the DriverLog and the ZenoTravel variants. Here we examine OAKPLAN-Nns, DOWNWARD, LPG,
METRIC-FF and SGPLAN-IPCS.

55

Rovers Domain TPP Domain

Milliseconds Milliseconds
le+08 ; T T 1e+08 T T T
—+— OAKplan-Nns (Speed - 214 solved) —+— OAKplan-Nns (Speed - 210 solved)
- LPG (Speed- 216 solved) - LPG (Speed - 2 solved)
e Metric-FF (Speed - 198 solvedy | [*-—- Downward (Speed - 211 solved)
1e+07 SGPlan-1PC5 (Speed - 216 solved) 1 1e+07 | = Metric-FF (Speed - 77 solved) g
SGPlan-1PC5 (Speed - 211 solved)
G o o o Pl
=25] \@
les0s £ 1 0 %@% . M@ﬁ%ﬂyﬁ% mugﬂ 16406
s mﬂwww oo
JW ﬂxWM
10000 ¥ 4 10000 it 1
1000 1000
50 100 150 200 50 100 150 200
Problem number Problem number
Plan distance Plan distance
700 600

100
50 100 150
Problem number Problem number
Quality Quality

500 500
450 R
400 - :
350 | ‘*

w@
250 I Tﬁf@%ﬁﬁ%ﬁ &ﬁg‘%ﬁ

ux%

150 200
50 100 150 200 50 100 150 200

Problem number Problem number

Figure 26: CPU-time (on a logarithmic scale), number of different actions and plan qualities for the
Rover and the TPP variants. Here we examine OAKPLAN-Nns, DOWNWARD, LPG, METRIC-FF and
SGPLAN-IPCS.

56

Problems solved

1400 ‘ ‘ T ‘ ‘
—+— OAKplan-Nns (1263 solved)
1200 - = Do 80 solved)]

ric-FF (676 solved)
SGPLAN-IPC5 (930 solved)
1000

800

600

400

‘ Il Il Il Il Il Il Il Il
ol
0 200 400 600 800 1000 1200 1400 1600 1800

seconds

Figure 27: Cumulative distribution of the total number of variants solved by the different planners vs.
time.

Some CBP systems designed in the past do not consider any generative planning in their
structure, and find a solution only by the cases stored in the case base. These CBP systems
are called reuse-only systems. As reuse-only systems cannot find any planning solution from
scratch, they cannot find a solution unless they find a proper case in the case base that can
be adapted through single rules. An alternative approach to reuse-only systems is the reuse-
optional approach, which uses a generative planning system that is responsible to adapt the
retrieved cases. This feature allows a CBP system to solve problems that cannot be solved only
by using stored cases and simple rules in the adaptation phase. Empirically, a great number of
reuse-optional CBP systems has shown that the use of a case base can permit them to perform
better in processing time and in a number of planning solutions than the generative planning
that they incorporate.

Obviously the retrieval phase critically affects the systems performance; it must search in a
space of cases in order to choose a good one that will allow the system to solve a new problem
easily. In order to improve efficiency in the retrieval phase, it is necessary either to reduce
the search space or to design an accurate similarity metric. Reducing the search space, only a
suitable subset of cases will be available for the search process and an accurate similarity metric
will choose the most similar case to decrease the adaptation phase effort. In the literature there
are different domain dependent and a few domain independent plan adaptation and case-based
planning systems, which mostly use a search engine based on a space of states [36, 39, 79, 80].
An alternative approach to planning with states is that of plan-space planning or hierarchical
systems [5] that search in a space of plans and have no goals, but only tasks to be achieved.
Since tasks are semantically different from goals, the similarity metric designed for these CBP
systems is also different from the similarity rules designed for state-space based CBP systems.
For a detailed analysis of case-based and plan adaptation techniques see the papers of Spalazzi
[76] and Munoz-Avila & Cox [59].

57

The CHEF system [37] is the first application of CBR in planning and it is a reuse-only
system which is important especially from a historical point of view. It solves problems in the
domain of Szechwan cooking and is equipped with a set of plan repair rules that describe how
a specific failure can be repaired. Given a goal to produce a dish with particular properties,
CHEF first tries to anticipate any problems or conflicts that may arise from the new goal and
repairs problems that did not arise in the baseline scenario. It then executes the plan and, if
execution results in a failure, a repair algorithm analyses the failure and builds an explanation
of the reason why the failure has occurred. This explanation includes a description of the steps
and states leading towards the failure as well as the goals that these steps tried to realise. Based
on the explanation, a set of plan repair strategies is selected and instantiated to the specific
situation of the failure. After choosing the best of these instantiated repair strategies, CHEF
implements it and uses the result of the failure analysis to improve the index of this solution so
that it will not be retrieved in situations where it will fail again.

Much attention has been given to research that designs suitable similarity metrics. It fo-
cuses on choosing the most adaptable case as the most similar one, such as the DIAL [51] and
DEJAVU [74] systems. The DIAL system is a case-based planner that works in disaster domains
where cases are schema-based episodes and uses a similarity assessment approach, called RCR,
which considers an adaptability estimate to choose cases in the retrieval phase. Our similarity
functions differ from the RCR method since they are based on a domain knowledge that is
available in action definitions, while the RCR method uses the experience learned from the
adaptation of previous utilisation of cases. They also differ in their applicability because the
RCR method considers specifically disaster domains while our approach is suitable for domain
independent planning.

Similarly, the DEJAVU system operates in design domains and uses an adaptation-guided
retrieval (AGR) procedure to choose cases that are easier to be adapted. The AGR approach
in the DEJAVU system uses additional domain knowledge, called capability knowledge, which
is similar to that used to solve conflicts in partial-order planning systems. This additional
knowledge allows to identify the type and the functionality of a set of transformations, which
are performed by actions, through a collection of agents called specialists and strategies. It
must be well specified so as to maximise the AGR performance. Our similarity functions
differ from the AGR approach because we do not use any domain knowledge besides that
obtained from actions and states, which is the minimal knowledge required to define a domain
for planning systems.

The PLEXUS system [2] confronts with the problem of “adaptive planning”, but also ad-
dresses the problem of runtime adaptation to plan failure. PLEXUS approaches plan adaptation
with a combination of tactical control and situation matching. When plan failure is detected
it is classified as either beginning a failing precondition, a failing outcome, a case of differing
goals or an out-of-order step. If we ignore how to manage incomplete knowledge, the repair
strategy involves the fact of replacing a failed plan step with one that might achieve the same
purpose. It uses a semantic network to represent abstraction classes of actions that achieve the
same purpose.

The GORDIUS [73] system is a transformational planner that combines small plan frag-
ments for different (hopefully independent) aspects of the current problem. It does not perform
an anticipation analysis on the plan, on the contrary it accepts the fact that the retrieved plan
will be flawed and counts on its repair heuristics to patch it; in fact, much of the GORDIUS
work is devoted to developing a set of repair operators for quantified and metric variables. The
previous approaches differ with respect to OAKPLAN fundamentally because they are domain

58

dependent planners; on the contrary OAKPLAN uses only the domain and planning problems
descriptions.

Three interesting works developed at the same time adopt similar assumptions: the PRIAR
system [45], the SPA system [39] and the Prodigy/Analogy system [81, 82]. PRIAR uses a
variant of Nonlin [78], a hierarchical planner, whereas SPA uses a constraint posting technique
similar to Chapman’s Tweak [13] as modified by McAllester and Rosenblitt [57]. PRIAR’s
plan representation and thus its algorithms are more complicated than those of SPA. There
are three different types of validations (filter condition, precondition, and phantom goal) as
well as different reduction levels for the plan that represents a hierarchical decomposition of
its structure, along with five different strategies for repairing validation failures. In contrast
to this representation the plan representation of SPA consists of causal links and step order
constraints. The main idea behind the SPA system that separates it from the systems mentioned
above is that the process of plan adaptation is a fairly simple extension of the process of plan
generation. In the SPA view, plan generation is just a special case of plan adaptation (one in
which there is no retrieved structure to exploit). With respect to our approach that defines a
matching function g from II to II' that maximises the similarity function simil,, it should
be noted that in PRIAR and SPA the conditions for the initial state match are slightly more
complicated. In PRIAR the number of inconsistencies in the validation structure of the plan
library is minimised; in SPA the number of violations of preconditions in the plan library is
maximised. Moreover the problem-independent matching strategy implemented in SPA runs
in exponential time in the number of objects since it simply evaluates all possible mappings.
On the contrary we compute an approximate matching function in polynomial time and use an
accurate plan evaluation function on a subset of the plans in the library.

The Prodigy/Analogy system also uses a search oriented approach to planning. A library
plan (case) in a transformational or case-based planning framework stores a solution to a prior
problem along with a summary of the new problems for which it would be a suitable solution,
but it contains little information on the process that generates the solution. On the other hand
derivational analogy stores substantial descriptions of the adaptation process decisions in the
solution, whereas Veloso’s system records more information at each choice point than SPA
does, like a list of failed alternatives. An interesting similarity rule in the plan-space approach
is presented in the CAPLAN/CBC system [60] which extends the similarity rule introduced by
the Prodigy/Analogy system [81, 82] by using feature weights in order to reduce the errors
in the retrieval phase. These feature weights are learned and recomputed according to the
performance of the previous retrieved cases and we can note that this approach is similar to the
RCR method used by the DIAL system in disaster domains. There are two important differences
between our approach and the similarity rules of CAPLAN/CBC, one of which is that the former
is designed for state-space planning and the latter for plan-space planning. Another difference
is that our retrieval function does not need to learn any knowledge to present an accurate
estimate: our retrieval method only needs the knowledge that can be extracted from the problem
description and the actions of the planning cases.

O-Plan [19, 20] is based on the strategy of using plan repair rules as well. The effects of
every action are confirmed while execution is performed. A repair plan formed by additional
actions is added to the plan every time a failing effect is necessary in order to execute some
other actions. We call repair plans the prebuilt ones which are in a position to repair a series of
failure conditions. For instance, we can have repair plans including a plan to replace either a
flat tyre or a broken engine. When an erroneous condition is met, the plan is no longer executed
but a repair plan is inserted and executed. When the repair plan is complete, the regular plan

59

is executed once more. Failures are repaired by O-Plan by adding actions. It follows that it
does not use either unrefinements or requires a history. However it is not complete and there
are some failures which cannot be repaired.

MLR [61] is another case-based system and it is based on a proof system. While retrieving
a plan from the library that has to be adapted to the current world state, it makes an effort to
employ the retrieval plan as if it were a proof to set the goal conditions from the start. Should
this happen, there is no need for any iteration to use the plan, otherwise, the outcome is a failed
proof that can provide refitting information. On the basis of the failed proof, a plan skeleton is
built through a modification strategy and it makes use of the failed proof to obtain the parts of
the plan that are useful and removes the useless parts. After the computation of this skeleton,
gaps are filled through a refinement strategy which makes use of the proof system. Although
our object matching function is inspired to the Nebel & Koehler’s formalisation, our approach
significantly differs from theirs since they do not present an effective domain independent
matching function. In fact, their experiments exhibit an exponential run time behaviour for
the matching algorithm they use, instead we show that the retrieval and matching processes
can be performed efficiently also for huge plan libraries. The matching function formalisation
proposed by Nebel & Koehler also tries to maximise first the cardinality of the common goal
facts set and second the cardinality of the common initial facts set. On the contrary we try
to identify the matching function y that maximise the simil,, similarity value which considers
both the initial and goal relevant facts and an accurate evaluation function based on a simulated
execution of the candidate plans is used to select the best plan that has to be adapted.

Nebel & Koehler [61] present an interesting comparison of the MLR, SPA and PRIAR per-
formance in the BlocksWorld domain considering planning instances with up to 8 blocks. They
show that also for these small sized instances and using a single reuse candidate the matching
costs are already greater than adaptation costs. When the modification tasks become more dif-
ficult, since the reuse candidate and the new planning instance are structurally less similar, the
savings of plan modification become less predictable and the matching and adaptation effort is
higher than the generation from scratch. On the contrary OAKPLAN shows good performance
with respect to plan generation and our tests in the BlocksWorld domain consider instances
with up to 140 blocks and a plan library with ten thousands cases.

The LPA* algorithm is used by the SHERPA replanner [53]. This algorithm was originally
bound to repair path plan and backtrack to a partial plan having the same heuristic value as
before the unexpected changes did in the world using the unrefinement step once. SHERPA
is not useful to solve every repair problem, owing to the unrefinement strategy and the single
application thereof. Its use is restricted to those problems whose actions are no longer present
in the domain description. It follows that through the unrefinement step unavailaible actions
are removed.

The Replan [8] model of plans is similar to the plans used in the hierarchical task network
(HTN) formalism [21]. A task network is a description of a possible way to fulfil a task by
doing some subtasks, or, eventually (primitive) actions. For each task at least one of such
task networks exists. A plan is created by choosing the right task networks for each (abstract)
task chosen, until each network consists of only (primitive) actions. Throughout this planning
process, Replan constructs a derivation tree that includes all tasks chosen, and shows how a
plan is derived. Plan repair within Replan is called partialisation. For each invalidated leaf
node of the derivation tree, the (smallest) subtree that contains this node is removed. Initially,
such an invalid leave node is a primitive action and the root of the corresponding subtree is
the task containing this action. Subsequently a new refinement is generated for this task. If the

60

refinement fails, a new round is started in which task subtrees that are higher in the hierarchy are
removed and regenerated. In the worst case, this process continues until the whole derivation
tree is discarded.

A very interesting case-based planner is the FAR-OFF** (Fast and Accurate Retrieval on
Fast Forward) system [79]. It uses a generative planning system based on the FF planner [42]
to adapt similar cases and a similarity metric, called ADG (Action Distance-Guided), which,
like EVALUATEPLAN, determines the adaptation effort by estimating the number of actions
that is necessary to transform a case into a solution of the problem. The ADG similarity metric
calculates two estimate values of the distance between states. The first value, called initial
similarity value, estimates the distance between the current initial state I and the initial state
of the case I building a relaxed plan having I as initial state and I, as goal state. Similarly
the second value, called goal similarity value, estimates the distance between the final state
of the case and the goals of the current planning problem. Our EVALUATEPLAN procedure
evaluates instead every single inconsistency that a case base solution plan determines in the
current world state I.

The FAR-OFF system uses a new competence-based method, called Footprint-based Re-
trieval [75], to reduce the space of cases that will be evaluated by ADG. The Footprint-based
Retrieval is a competence-based method for determining groups of footprint cases that repre-
sent a smaller case base with the same competence of the original one. Each footprint case has
a set of similar cases called Related Set [75]. The union of footprint cases and Related Set is
the original case base. On the contrary OAKPLAN uses a much more simple procedure based
on the simil® function to filter out irrelevant cases. The use of Footprint-based Retrieval tech-
niques and case base maintenance policies in OAKPLAN is left for future work. It is important
to point out that the retrieval phase of FAR-OFF does not use any kind of abstraction to match
cases and problems.

The FAR-OFF system retrieves the most similar case, or the ordered k most similar cases,
and shifts to the adaptation phase. Its adaptation process does not modify the retrieved case,
but only completes it; it will only find a plan that begins from the current initial state and
then goes to the initial state of the case, and another plan that begins from the state obtained
by applying all the actions of the case and goes to a state that satisfies the current goals G.
Obviously, the completing of cases leads the FAR-OFF system to find longer solution plans
than generative planners, but it avoids wasting time in manipulating case actions in order to find
shorter solutions length. To complete cases, the FAR-OFF system uses a FF-based generative
planning system, where the solution is obtained by merging both plans that are found by the
FF-based generative planning and the solution plan of the planning case selected. On the
contrary OAKPLAN uses the LPG-adapt adaptation system, which uses a local search approach
and works on the whole input plan so as to adapt and find a solution to the current planning
problem.

In Figure 28 we can observe the behaviour of OAKPLAN vs FAR-OFF considering different
variants of the greater case bases provided with the FAR-OFF system in the Logistics domain;
similar results have been obtained in the BlocksWorld, DriverLog and ZenoTravel domains.
Globally, we can observe that FAR-OFF is always faster than OAKPLAN both considering the
retrieval and the total adaptation time although also the OAKPLAN CPU-time is always lower

*FAR-OFF is available at http://www.fei.edu.br/~flaviot/faroff.

3We have used the case bases for the logistics-16-0, logistics-17-0 and logistics-18-0 Logistics IPC2 problems.
For each problem considered the FAR-OFF system must have a case base with the same structure to perform tests.
More than 700 cases belong to each case base and for each case base we have selected two planning cases and
randomly generated 36 variants.

61

OAKplan vs FAROFF

seconds
0.8 ‘
—+— OAKplan
07 kL OAKplan retrieval |
R e *-- FAROFF
06 g FAROFF retrieval

0.5

0.4

0.3

0.2

Problem number

Plan Distance
90 :
—+— OAKplan
8+ *---- FAROFF ’:f i
70

40
30
20
10

Problem number

Quality
200 T T
—+— OAKplan
o *-- FAROFF
160

40 L L L L

50 100 150 200
Problem number

Figure 28: CPU-time, number of different actions and plan qualities for the Logistics variants. Here
we examine OAKPLAN vs. FAR-OFF.

62

than 0.6 seconds. Considering OAKPLAN, most of the CPU-time is devoted to the computation
of the matching functions which are not computed by FAR-OFF since it simply considers the
identity matching function that directly assigns the objects of the case base to those of the
current planning problem with the same name. In fact, it does not consider objects which are
not already present in the case base and, to overcome this limitation, the variants used in this
test are directly obtained by the problems stored in the case bases.

Regarding the plan qualities*® and the plan distances, it is important to point out that for
each variant solved by OAKPLAN we consider only the first solution produced since FAR-OFF
does not perform a plan optimisation process. However OAKPLAN is able to obtain better
plans both considering the plan quality and the plan distance values. Globally, OAKPLAN is
able to find plans with 20% better quality and 24% better plan distances. Moreover further
improvements on plan qualities and distance values of OAKPLAN could be obtained by per-
forming the optimisation process of LPG-adapt.

Finally, note that in this experiment we have used the case bases provided by FAR-OFF
which contain 700 elements each and the corresponding cases are generated by creating ran-
domly planning problems all with the same configuration: same objects, trucks and airplanes
simply disposed in different ways. This kind of experiment is highly unfavourable to OAKPLAN
since our first screening procedure cannot filter out a significant number of cases as they all
have the same structure. On the contrary, in the experiments described in the previous sections
the case bases used by OAKPLAN in the standard configuration (not the “small” versions) are
not constrained to a particular planning problem but they have been generated by considering
all the different planning problems configurations used in the International Planning Competi-
tions. This is a much more realistic situation, where the cases are added to the case base when
the planning problems provided by the users are resolved as time goes by.

6 Summary and Future Work

CBP systems can take advantage of plan reuse where possible. The success of these systems
depends on the ability to retrieve old cases that are similar to the target problem and to adapt
these cases appropriately. In this paper our aim is to provide a new and effective case-based
planner which is able to retrieve planning cases from huge plan libraries efficiently, choose a
good candidate and adapt it in order to provide a solution plan which has good plan quality
and is similar to the plan retrieved from the case base. We have described a novel case-based
planning system, called OAKPLAN, which uses ideas from different research areas showing
excellent performance in many standard planning benchmark domains. In this paper we have
analysed the main components of our CBP system, which presents significant improvements
as to the state of the art especially in the filtering and retrieval phases.

Given a planning problem we encode it as a compact graph structure that we call Planning
Encoding Graph. This graph representation can give us a detailed description of the topology
of the planning problem without requiring any a priori assumptions on the relevance of certain
problem descriptors for the whole graph. Although it is possible to formulate the matching of
the objects of two planning problem as a MCS problem, its exact resolution is infeasible from
a computational point of view also for a limited number of candidate planning cases. Then
we describe an approximate evaluation based on kernel functions to define a matching among
the objects of two planning problems encoded as Planning Encoding Graphs. Experimental

3In STRIPS domains the plan quality is obtained by considering the number of actions in the solution plan.

63

results show the crucial importance of an accurate matching function for the global system
performance, not only in order to obtain low distance values but also to solve a reasonable
number of planning problems. Anyway, since the retrieval phase could be very expensive from
a computational point of view when a huge plan library is used, we developed a screening
procedure based on graph degree sequences to filter out irrelevant cases and execute the kernel
function evaluation only to the most promising planning cases.

Finally an accurate plan evaluation phase is performed to define the “capacity” of the re-
trieved plans to solve the current planning problem. This evaluation is performed simulating
the execution of the plans m; and evaluating through a relaxed planning graph technique the
cost of repairing the inconsistencies corresponding to the unsupported preconditions of the
actions of m;. Moreover, the evaluation of the generation cost allows to choose between an
“adaptive” approach and a “generative” approach, if no plan gives an adaptation cost smaller
than the generation cost. To the best of our knowledge this is the first case-based planner that
performs an efficient domain independent objects matching evaluation on plan libraries with
thousands of cases.

We have examined OAKPLAN in comparison with four state of the art plan generation
systems showing its extremely good performance in terms of the number of problems solved,
CPU time, plan difference values and plan quality. Results are very encouraging and show
that the case-based planning approach can be an effective alternative to plan generation when
“sufficiently similar” reuse candidates can be chosen. This happens to different practical appli-
cations especially when the “world is regular” and the types of problems the agents encounter
tend to recur. Moreover this kind of approach could be extremely appealing in situations in
which the “stability” of the plan produced is fundamental. This is the case, for example, in
mission critical applications where end users do not accept newly generated plans and prefer
to use known plans that have already been successful in analogous situations and can be easily
validated.

We believe that even more significant results will come from combining our approach with
ideas and methods that have been developed in planning, case-based reasoning, graph theory
and supervised learning research areas. Specifically, directions we are considering include:

* Case base maintenance: the efficiency of the retrieval phase can be improved by using
case base maintenance policies and a more thorough evaluation of the competence of the
library as proposed by [75, 79].

* Graph representation: our current graph representation is based only on the initial and
goal states of the planning problem examined; a more accurate representation could try
to consider the actions in the solution plans and the domain operators available, or give
more importance to the most relevant initial state facts. It could also be very interest-
ing to extend our graph representation to afford temporal and numeric planning prob-
lems effectively. In fact, although OAKPLAN can afford temporal and metric domains,
the numeric description of the planning problems examined is not actually used in the
definition of the Planning Encoding Graph and in the corresponding kernel functions,
determining potential low performance.

* Matching functions: new and more effective matching functions could be obtained by
considering additional information that can be derived from domain analysis such as
invariants [23, 32] and symmetries [24]. These functions may also be defined by ex-
amining particular structures of the Planning Encoding Graphs like cliques, line-graphs,
or using new approaches derived by graph matching and graph edit distance techniques
[9, 29, 62, 63, 67].

64

* Learning: these techniques found to be useful in different planning methods; our kernel
functions can be plugged into any kernel-based machine learning algorithm, like, e.g.,
SVMs [18], SVR and Kernel PLS [68] to better classify the planning cases or improve
the matching functions themselves.

* Adaptation: our retrieval/evaluation/update techniques are independent by the adaptation
mechanism adopted and other adaptation methods like ADJUST-PLAN [35, 36] and POPR
[80] could be effectively used as well.

Acknowledgments

This research was supported by the research project “Study and Design of a Prototype of an In-
telligent Planning System for the Building of Learning Paths” of the Free University of Bozen.
We thank Piergiorgio Bertoli, Alfonso E. Gerevini, Alessandro Saetti and especially the anony-
mous referees for their helpful comments. The authors would like to thank Flavio Tonidandel

and

Marcio Rillo for putting their benchmark set and the FAR-OFF planning system at our

disposal.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodological variations,
and system approaches. AI Commun., 7(1):39-59, March 1994.

R. Alterman. An adaptive planner. In J. Allen, J. Hendler, and A. Tate, editors, Readings in
Planning, pages 660—664. Kaufmann, San Mateo, CA, 1990.

T. Au, H. Mufioz-Avila, and D. S. Nau. On the complexity of plan adaptation by derivational anal-
ogy in a universal classical planning framework. In Proceedings of the 6th European Conference
on Advances in Case-Based Reasoning, pages 13-27, London, UK, 2002. Springer-Verlag.

F. Bacchus and F. Kabanza. Using temporal logic to express search control knowledge for plan-
ning. Artificial Intelligence, 116(1-2):123-191, 2000.

R. Bergmann and W. Wilke. Building and refining abstract planning cases by change of represen-
tation language. Journal of Artificial Intelligence Research, 3:53—118, 1995.

S. Biundo, K. L. Myers, and K. Rajan, editors. Proceedings of the Fifteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, Califor-
nia, USA. AAALI, 2005.

W. D. Blizard. Multiset theory. Notre Dame Journal of Formal Logic, 30(1):36-66, 1989.

G. Boella and R. Damiano. A replanning algorithm for a reactive agent architecture. In D. Scott,
editor, AIMSA, volume 2443 of Lecture Notes in Computer Science, pages 183—192. Springer,
2002.

H. Bunke. Recent developments in graph matching. In 15th International Conference on Pattern
Recognition, volume 2, pages 117-124, 2000.

T. Bylander. An average case analysis of planning. In Proceedings of the Eleventh National
Conference of the American Association for Artificial Intelligence (AAAI-93), pages 480485,
Washington, D.C., 1993. AAAI Press/The MIT press.

T. Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelli-
gence, 69:165-204, 1994.

T. Bylander. A probabilistic analysis of propositional STRIPS planning. Artificial Intelligence,
81(1-2):241-271, 1996.

65

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333-377, 1987.

M. Chein and M. Mugnier. Graph-based Knowledge Representation: Computational Foundations
of Conceptual Graphs. Springer Publishing Company, Incorporated, 2008.

Y. P. Chien, A. Hudli, and M. Palakal. Using many-sorted logic in the object-oriented data model
for fast robot task planning. Journal of Intelligent and Robotic Systems, 23(1):1-25, 1998.

A. G. Cohn. Many sorted logic=unsorted logic+control? In Proceedings of Expert Systems 86,
The 6Th Annual Technical Conference on Research and development in expert systems III, pages
184-194, New York, NY, USA, 1987. Cambridge University Press.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm
for matching large graphs. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
26(10):1367-1372, 2004.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, 2000.

K. Currie and A. Tate. O-plan: The open planning architecture. Artificial Intelligence, 52(1):49—
86, 1991.

B. Drabble, J. Dalton, and A. Tate. Repairing plans on the fly, 1997.

Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and expressivity.
In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), volume 2,
pages 1123-1128, Seattle, Washington, USA, August 1994. AAAI Press/MIT Press.

M. Fox, A. Gerevini, D. Long, and 1. Serina. Plan stability: Replanning versus plan repair. In
Proceedings of International Conference on Al Planning and Scheduling (ICAPS). AAAI Press,
2006.

M. Fox and D. Long. The automatic inference of state invariants in TIM. Journal of Artificial
Intelligence Research (JAIR), 9:367-421, 1998.

M. Fox and D. Long. The detection and exploitation of symmetry in planning problems. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99), pages
956-961, 1999.

H. Frohlich, J. K. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels for attributed
molecular graphs. In L. De Raedt and S. Wrobel, editors, ICML, volume 119 of ACM International
Conference Proceeding Series, pages 225-232. ACM, 2005.

H. Frohlich, J. K. Wegner, F. Sieker, and A. Zell. Kernel Functions for Attributed Molecular
Graphs — A New Similarity Based Approach To ADME Prediction in Classification and Regres-
sion. OQSAR Comb. Sci., 25:317-326, 2006.

H. Frohlich, J. K. Wegner, and A. Zell. Assignment Kernels For Chemical Compounds. In Infer-
national Joint Conference on Neural Networks 2005 (IJCNN’05), pages 913-918, 2005.

M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, 1979.

T. Gértner. A survey of kernels for structured data. SIGKDD Explor. Newsl., 5(1):49-58, 2003.

D. Gentner. The mechanisms of analogical learning. In B. G. Buchanan and D. C. Wilkins, editors,
Readings in Knowledge Acquisition and Learning: Automating the Construction and Improvement
of Expert Systems, pages 673—694. Kaufmann, San Mateo, CA, 1993.

A. Gerevini, A. Saetti, and I. Serina. Planning through stochastic local search and temporal action
graphs. Journal of Artificial Intelligence Research (JAIR), 20:pp. 239-290, 2003.

A. Gerevini and L. Schubert. On point-based temporal disjointness. Artificial Intelligence, 70:347—
361, 1994.

66

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

A. Gerevini and L. Schubert. Accelerating Partial-Order Planners: Some Techniques for Effective
Search Control and Pruning. Journal of Artificial Intelligence Research (JAIR), 5:95-137, Sept.
1996.

A. Gerevini and I. Serina. Fast planning through greedy action graphs. In Proceedings of the
16th National Conference of the American Association for Artificial Intelligence (AAAI-99), pages
503-510. AAAI Press/MIT Press, July 1999.

A. Gerevini and 1. Serina. Plan adaptation through planning graph analysis. In Lecture Notes in
Artificial Intelligence (AI*IA 99), pages 356-367. Springer-Verlag, 1999.

A. Gerevini and I. Serina. Fast plan adaptation through planning graphs: Local and systematic
search techniques. In Proceedings of the 5th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-00), pages 112-121. AAAI Press/MIT Press, 2000.

K. Hammond. Explaining and repairing plans that fail. Artificial Intelligence, 45:173-228, 1990.

S. Hanks and D. S. Weld. Systematic adaptation for case-based planning. In J. Hendler, editor,
AIPS-92: Proc. of the First International Conference on Artificial Intelligence Planning Systems,
pages 96-105. Kaufmann, San Mateo, CA, 1992.

S. Hanks and D.S. Weld. A domain-independent algorithm for plan adaptation. Journal of Artifi-
cial Intelligence Research (JAIR), 2:319-360, 1995.

P. Hansen. Upper bounds for the stability number of a graph. Rev. Roumaine Math. Pures Appl.,
24:1195-1199, 1979.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, UC
Santa Cruz, 1999.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research (JAIR), 14:253-302, 2001.

M. Johnson. Relating metrics, lines and variables defined on graphs to problems in medicinal
chemistry. John Wiley & Sons, Inc., New York, NY, USA, 1985.

S. Kambhampati. A theory of plan modification. In Proceedings of the Eighth National Conference
on Artificial Intelligence (AAAI-90), pages 176-182, Boston, Massachusetts, USA, July 1990.
AAAI Press/MIT Press.

S. Kambhampati and J. A. Hendler. A validation-structure-based theory of plan modification and
reuse. Artificial Intelligence, 55:193-258, 1992.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In
T. Fawcett and N. Mishra, editors, ICML, pages 321-328. AAAI Press, 2003.

H.A. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochas-
tic search. In Howard Shrobe and Ted Senator, editors, Proceedings of the Thirteenth National
Conference of the American Association for Artificial Intelligence (AAAI-96), pages 1194—-1201.
AAAI Press, 1996.

V. Kuchibatla and H. Mufioz-Avila. An analysis on transformational analogy: General framework
and complexity. In ECCBR, volume 4106 of Lecture Notes in Computer Science, pages 458—473.
Springer, 2006.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistic Quar-
terly, 2:83-97, 1955.

D. B. Leake, editor. Case-Based Reasoning. The MIT Press, Cambridge, Massachusetts, 1996.

D. B. Leake, A. Kinley, and D. C. Wilson. Case-based similarity assessment: Estimating adapt-
ability from experience. In Proceedings of the 14th National Conference on Artificial Intelligence
-AAAI’97, pages 674—679, Menlo Park, CA, USA, 1997. AAAI Press.

67

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

P. Liberatore. On the complexity of case-based planning. Journal of Experimental & Theoretical
Artificial Intelligence, 17(3):283-295, 2005.

M. Likhachev and S. Koenig. A generalized framework for lifelong planning a* search. In Biundo
et al. [6], pages 99-108.

D. Lin. An information-theoretic definition of similarity. In J. W. Shavlik, editor, ICML, pages
296-304. Morgan Kaufmann, 1998.

R. Y. Liu. An upper bound on the chromatic number of a graph. J. Xinjiang Univ. Natur. Sci.,
6:24-27, 1989.

D. Long and M. Fox. The 3rd international planning competition: Results and analysis. Journal
of Artificial Intelligence Research (JAIR), 10:1-59, 2003.

D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-91), pages 634-639, July 1991.

J. Mercer. Functions of positive and negative type and their connection with the theory of integral
equations. Philos. Trans. Roy. Soc. London, A 209:415-446, 1909.

H. Muiioz-Avila and M. Cox. Case-based plan adaptation: An analysis and review. IEEE Intelli-
gent Systems, 23(4):75-81, 2008.

H. Mufioz-Avila and J. Hiillen. Feature weighting by explaining case-based planning episodes. In
EWCBR ’96: Proceedings of the Third European Workshop on Advances in Case-Based Reason-
ing, pages 280-294, London, UK, 1996. Springer-Verlag.

B. Nebel and J. Koehler. Plan reuse versus plan generation: A complexity-theoretic perspective.
Artificial Intelligence- Special Issue on Planning and Scheduling, 76:427-454, 1995.

M. Neuhaus and H. Bunke. A convolution edit kernel for error-tolerant graph matching. volume 4,
pages 220-223, Washington, DC, USA, 2006. IEEE Computer Society.

M. Neuhaus and H. Bunke. Bridging the gap between Graph Edit Distance and Kernel Machines.
World Scientific, 2007.

A. N. Papadopoulos and Y. Manolopoulos. Structure-based similarity search with graph his-
tograms. In In Proceedings of the 10th International Workshop on Database & Expert Systems
Applications, pages 174—178. IEEE Computer Society Press, 1999.

M. E. Pollack, D. Joslin, and M. Paolucci. Flaw selection strategies for partial-order planning.
Journal of Artificial Intelligence Research (JAIR), 6:223-262, 1997.

J. W. Raymond, E. J. Gardiner, and P. Willett. Rascal: Calculation of graph similarity using
maximum common edge subgraphs. The Computer Journal, 45(6):631-644, June 2002.

K. Riesen and H. Bunke. Approximate graph edit distance computation by means of bipartite
graph matching. Image Vision Comput., 27(7):950-959, 2009.

R. Rosipal and L. J. Trejo. Kernel partial least squares regression in reproducing kernel hilbert
space. J. Mach. Learn. Res., 2:97-123, 2002.

B. H. Ross. Some psychological results on case-based reasoning. In Proc. of a Workshop on
Case-Based Reasoning, pages 144—147, Pensacola Beach, FL, 1989.

F. Ruskey, R. Cohen, P. Eades, and A. Scott. Alley cats in search of good homes. Twenty-fifth
Southeastern Conference on Combinatorics, Graph Theory and Computing, 102:97-110, 1994.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceedings
of the Twelfth National Conference of the American Association for Artificial Intelligence (AAAI-
94), pages 337-343, Seattle, WA, 1994. Morgan Kaufmann.

68

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

R. G. Simmons. A theory of debugging plans and interpretations. In Proc. of AAAI-88, pages
94-99, St. Paul, MN, 1988.

B. Smyth and M. T. Keane. Adaptation-guided retrieval: Questioning the similarity assumption in
reasoning. Artificial Intelligence, 102(2):249-293, 1998.

B. Smyth and E. McKenna. Footprint-based retrieval. In K. D. Althoff, R. Bergmann, and
K. Branting, editors, ICCBR, volume 1650 of Lecture Notes in Computer Science, pages 343—
357. Springer, 1999.

L. Spalazzi. A survey on case-based planning. Artificial Intelligence Review, 16(1):3-36, 2001.

B. Srivastava, T. A. Nguyen, A. Gerevini, S. Kambhampati, M. B. Do, and I. Serina. Domain
independent approaches for finding diverse plans. In M. M. Veloso, editor, IJCAI, pages 2016—
2022, 2007.

A. Tate. Generating project networks. In Proceedings of the Fifth International Joint Conference
on Artificial Intelligence (IJCAI-77), pages 888—889, Cambridge, MA, 1977. MIT.

F. Tonidandel and M. Rillo. The FAR-OFF system: A heuristic search case-based planning. In
M. Ghallab, J. Hertzberg, and P. Traverso, editors, AIPS, pages 302-311. AAAI, 2002.

R. van der Krogt and M Weerdt. Plan repair as an extension of planning. In Biundo et al. [6],
pages 161-170.

M. Veloso. Learning by analogical reasoning in general problem solving. Technical report, CMU-
CS-92-174, Department of Computer Science, Carnegie Mellon University, 1992.

M. Veloso. Planning and Learning by Analogical Reasoning, volume 886 of Lecture Notes in
Artificial Intelligence and Lecture Notes in Computer Science. Springer-Verlag Inc., New York,
USA, 19%4.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In S. Becker,
S. Thrun, and K. Obermayer, editors, NIPS, pages 569-576. MIT Press, 2002.

S. Vosniadou and A. Ortony, editors. Similarity and analogical reasoning. Cambridge University
Press, New York, NY, USA, 1989.

C. Walther. A mechanical solution of Schubert’s steamroller by many-sorted resolution. Artificial
Intelligence, 26(2):217-224, 1985.

F. Wilcoxon and R. A. Wilcox. Some Rapid Approximate Statistical Procedures. American
Cyanamid Co., Pearl River, NY, USA., 1964.

69

A Proofs

Theorem 3 obj_matchis NP-hard.

Proof. Similarly to the Nebel and Koehler’s analysis [61], NP-hardness is proved by a poly-

nomial transformation from the subgraph isomorphism problem for directed graphs, which is

NP-Complete ([28] p. 202), to obj_match. The subgraph isomorphism problem is defined

as follows:

Instance: Two directed Graphs G = (V4, E1) and Go = (Va, E3).

Question: Does (G5 contain a subgraph isomorphic to Gy, i.e., do there exist a subsets V' € V5
and a subset £ € E» such that |V| = |Vi|, |E| = |E1|, and there exists a one-to-one
function p : Vi — V satisfying (u,v) € Ey if and only if (u(w), u(v)) € E?

Given an instance of the subgraph isomorphism problem, we construct an instance of
obj_match as follows; let

H1 = (R(OlaPl)azlvglv Opl)

II; = (B-(02,P2),Z5,Ga, Opy)

be two planning instances such that

0:=02=V1UV;
Py =Py ={p}

Ti=I=0
G1 = {p(u,v)|(u,v) € Er)
Ga = {p(u,v)|(u,v) € Ea}

Op, = Opy

Now G contains a subgraph isomorphic to G iff there exists a mapping p(-) such that
[1(G1) NG| = |Ey| and

1(G1) 0 Go| + |(Z1) N Io| _ |Er| +]2]
|Gal + [(Z0)) | Es|

Note that G2 is isomorphic to G iff there exists a mapping p(-) such that |x(G1) N Go| =
|E1| = |E2| and Similu(ﬂl,ﬂg) =1

Similu(ﬂl, HQ) =

O

Theorem 4 R; is a kernel function.
Proof. We have to show that given a set of patterns x!, ..., x" the kernel matrix R = (R; (x,x7)); ;
is symmetric and positive semidefinite [71].

Clearly, R; is symmetric, because of the definition. Let (denote a permutation of an n-
subset of natural numbers 1, ..., m, or a permutation of an m-subset of natural numbers 1, ..., n,
respectively; then for any (it is

Ey(neay(x),n1(x)) - ke(ec1)(x),e1(x)) + ... + ko (e (n) (X), nn (X)) - ke (ec(n) (%), €n(x)) (15)

< %(ky(n1(x),n1(x)) ke(e1(x), e1(x)) +ku (n¢(1) (%), e 1) (%)) ke (ec 1) (%), ecy (%)) +-.. (16)

et kv(nn(x)v nn(x))) ke(en(x)v 6n(x)) + kv(nc(n) (X), ¢ (n) (X)) ’ ke(ec(n) (X)7 €¢(n) (X)))

70

= Zkv(ni(x)vni(x)) “ke(ei(x),€i(x)) (17)
because for any ¢
2 ky(ne iy (%), mi(x)) - ke(eciy (x), €i(x)) <
< ko (ni(x), ni(x)) - ke(ei(x), €(x)) + ko (n¢(i) (%), n¢) (X)) - ke(e¢() (%), €¢ i) (%))

since k, and k. are positive semidefinite kernel functions and the product of two kernel func-
tions is a kernel function. Now, if we take the maximum over all ¢ then R; (x,x) = (15)=(16)=(17).

Similarly R1(y,y) = X ku(n;(y),nj(y)) - ke(e;(y),e;(y)). Without loss of generality
we can assume that |y| > |x|. Further it holds for all o, € IR and 7, j
2a8ky(ni(x),n5(y)) - ke(ei(x), €5(y)) < (18)
@y (ni(x),ni(x)) - ke(ei(x), €i(x)) + B7ko (05 (), 15 (¥)) - ke(ej (¥), ¢ (¥))

because k, and k. are positive semidefinite kernel functions. It is
a®Ri(x,%) - 208R1(x,y) + B*Ri(y,y) = (19)
a® 3 ko (ni(x),mi(x)) - ke(ei(x), €(x)) -
—2amazz Y ko (ni(%), (i) (¥)) - ke (€i(%), ey (¥))+
2
+6° 2 ko(n(y),m5(y)) - ke(ej (v), €5(y))
J
By definition of R; the second sum of previous equation has min(|x|,|y|) = |x| addends.
Using (18) we have
x|
(19) 2 Y- (@®ky(ni(x), ni(%)) ke (€:(%), i (x) =208k (ni(%), ne (3 (y)) ke (ei (%), ec (i) (y)) +
i=1

+3%ky (ne(iy (), ey (7)) - ke (ec(iy () ey (¥)) 2 0. (20)

This proofs the positive semidefiniteness of each 2 x 2 kernel matrix. From this we can
generalise the result to n x n matrices by induction using the assumption that &, and k. are
non-negative. Suppose we already know that each n x n kernel matrix R = (R; (x*,x7)); ; for
a set of objects x!,...,x" is positive semidefinite. Now assume we extend the matrix to size
n+ 1 xn + 1 by adding an object x"*! . It is

n+1 n n

2
Y viviRij= > viviRij+2) v ViR + vy Rosine (21)
1,j=1 ,j=1 j=1

By induction assumption we know the first part of (21) to be non-negative. Furthermore,
by definition k, and k. are non-negative and thus also R; is non-negative. Hence, we have
V3L+1Rn+1,n+1 > 0.

Therefore, in order to make (21) < 0 we have to suppose 2 - Z;-l:l Vni1ViRp41,5 <0 and
similarly to (18) we have that

2 2
2-vpaViRni1j < v Rusi e + ViR 5

71

this leads to

n n
2 2
2- Z Vn+1VjRn+1,j < Z (Vn+1Rn+1,n+1 + VjRJ'J) <0
j=1 7=1

which is a contradiction to the non-negativity of Ry . Hence, it is (21) > 0, which proofs the
theorem. O
Theorem 5 Let (1) = p! with p € (0,0.5). If there exists a C € IR* , such that k, (v1,v2) < C
for all v1, v and k(e1, ez) < 1 for all ey, ey then (eq. 10) converges for L — oo.

Proof. It is

1 min(|E(w)],|E(v)])

maz(|E(u)l, |E(v)]) 2;

Ri(u,v) < MATry, 1ok (V1,V2) - MaTe, erke(e1,€2) <

<mm(|E(U)|,|E(U)|) <
" maz(|E(u)|,|[E(v)])

and thus
Ro(u,v) <
1

i (0)]- N ()] MAT s () i, () 1 (1 (0), 7 (W) 1100201 (1) et (uyke (€4, (V) €l (0)) +

1 o o o (o]
+|N0(v)| V)] 2 MAZL o (v),n0, (u) B1 (05 (0), N (1)) MaLeo () 0, (uyke (€5 (v), €l (1)) <

1 Ngjv)l W (w)] 1 IN“Z(:v)I IV (u)|

< — . C+
W)V (W) = Ne()l-INe(u)] =
Similarly we can show that R;(u,v) < 2i=1C for I = 3, ..., L. Therefore we have

(eq. 10)< C +pC +p*2C + ... + pL2l-lCc < C + ¥k (2p)'C
which converges for L — oo if p € (0,0.5).

c=2.C

J=1 J=1

72

B Variants

As previously described (see page 35), our tests have been conducted on a series of variants
of problems from different standard benchmark domains of the 2nd, 3rd and 5th International
Planning Competitions.?” The variant problems have been generated by taking six problems
from each benchmark test suite (except for the Logistics domain) and then randomly modify-
ing the initial state and goal states for a total of 216 planning problems for each domain. The
problems considered are:

 probblocks-40-0, probblocks-60-0, probblocks-80-0, probblocks-100-0, probblocks-120-1 and
probblocks-140-1 for BlocksWorld Additionals;

 randomly selected from logistics-16-0 to logistics-100-1 for Logistics Additionals Track2;

* pfilel4, pfile17, pfile20, pfile-HCO3, pfile-HCO06, pfile-HCO9 for DriverLog ;

* pfilel4, pfilel7, pfile20, pfile-HC14, pfile-HC17, pfile-HC20 for ZenoTravel;

* pfile35, pfile36, pfile37, pfile38, pfile39, pfile40 for Rovers-IPCS5;

* pfile25, pfile26, pfile27, pfile28, pfile29, pfile30 for TPP.

In the following we present a brief description of the domains and of the operators used in
order to modify the initial and the goal states of a base problem. In order to modify the initial
state, we randomly choose a completely instantiated “noisy” operator among those with all the
preconditions satisfied; the effects of the “noisy” operator determine a new initial state.

With respect to the goals, we propagate the effects of the actions of the solution plan of the
base problem in order to define a complete goal state; then we randomly choose a completely
instantiated “noisy” operator among those with all the preconditions satisfied and at least one
goal of the base problem that belongs to them. The effects of the “noisy” operator change the
goal state; in particular the negative effects delete the corresponding goals, while the positive
effects are added to the goal set.

BlocksWorld

The BlocksWorld is a standard Al planning benchmark. In this domain, there is a Table on
which a number of blocks are stacked. A block can be placed either on the Table or on top of
another block, but at most one block can be on top of any given block. There is a robot arm
that picks up and places the blocks, so only one block can be moved at a time.

The NOISE-falldown noisy operator is used to randomly split a pile of blocks into
piles; on the contrary the NOISE-pile—up operator is used to randomly pile up a pile of
blocks on the top of another one:

(:action NOISE-FALLDOWN
rparameters (?x ?vy)

:precondition (and (not (= ?x ?y)) (on ?x ?y) (handempty))
ceffect
(and (clear ?y) (not (on ?x ?y)) (ontable ?x)))

(:action NOISE-PILE-UP
:parameters (?x ?Vy)

The IPCs test problems that we have used are available at the following websites:
For IPC2, http://www.cs.toronto.edu/aips2000/,

For IPC3, http://planning.cis.strath.ac.uk/competition/,

For IPCS5, http://ipc5.ing.unibs.it.

73

:precondition (and (not (= ?x ?y)) (ontable ?x) (clear ?y) (handempty))
ceffect
(and (not (ontable ?x)) (not (clear ?y)) (on ?x ?vy)))

DriverLog

This domain involves driving trucks around for delivering packages between locations. The
complication is that the trucks require drivers who must walk between trucks in order to drive
them. The paths for walking and the roads for driving from different locations are specified in
the problem description.

The NOISE-move-package and NOISE-move-driver noisy operators are used to
randomly change the location of a package and of a driver respectively:

(:action NOISE-MOVE-PACKAGE

:parameters

(?0bj - obj ?loc-from - location ?loc-to - location ?loc-control
— location)

:precondition

(and (at ?obj ?loc-from) (link ?loc-control ?loc-to))

reffect

(and (not (at ?0bj ?loc-from)) (at ?2obj ?loc-to)))

(:action NOISE-MOVE-DRIVER

:parameters

(?driver - driver ?loc—-from - location ?loc—-to - location ?loc-control
- location)

:precondition

(and (at ?driver ?loc-from) (path ?loc-control ?loc-to))

ceffect

(and (not (at ?driver ?loc-from)) (at ?driver ?loc-to)))

Logistics

The logistics domain is a standard benchmark in Al planning. In this domain, there are several
cities and in each city a number of places. The goal is to move a number of packages from
their initial places to their respective destinations. Packages can be loaded into (and of course
unloaded from) vehicles of different kinds (trucks or airplanes). Trucks can only move between
places in the same city, while airplanes can only move between places of a particular kind,
namely airports.

The NOISE-move-package and the NOISE-fly—-airplane noisy operators are used
to change the location of a package and of an airplane respectively:

(:action NOISE-MOVE-PACKAGE

:parameters (?obj ?loc—-from ?loc-to)

:precondition

(and (package ?0bj) (location ?loc-from) (location ?loc-to)

74

(at ?0bj ?loc—-from))
ceffect
(and (not (at ?0bj ?loc—-from)) (at ?2obj ?loc-to)))

(:action NOISE-DELETE-CONN

:parameters (?loc—from ?loc-to)

:precondition

(and (conn ?loc—-from ?loc-to) (airport ?loc-from) (airport ?loc-to)
)

ceffect

(and (not (conn ?loc—-from ?loc-to))))

(:action NOISE-fly-airplane
:parameters (?airplane ?loc—-from ?loc-to)

:precondition

(and (airplane ?airplane) (airport ?loc-from) (airport ?loc-to)
(at ?airplane ?loc—-from) (conn ?loc-from ?loc-to))

reffect

(and (not (at ?airplane ?loc-from)) (at ?airplane ?loc-to)))
Rovers

This domain requires that a collection of rovers navigates a planet surface, finding samples,
analyse them and communicating the data back to a lander. In addition, a minor subtlety in the
encoding is used to prevent parallel communication between rovers and the lander. Because
deletes occur before adds, this has the overall effect of leaving the channel free, but it makes the
fact a "moving target" which prevents a concurrent action from using the fact. Some planners
find this mechanism difficult to handle.

The NOISE-communicate_soil_data,the NOISE-communicate_ rock_data
and the NOISE-communicate_image_data noisy operators are used to change the status
(either “communicated” or “not communicated’) of soil data, rock data and image data respec-
tively from a waypoint x to a waypoint y:

(:action NOISE-communicate_ soil data

:parameters (?r - rover ?x — waypoilnt ?y - waypoint)
:precondition

(and (communicated_soil_data ?x) (at_soil_sample ?y))

reffect

(and (not (communicated_soil _data ?x)) (communicated_soil_data
2y)))

(:action NOISE-communicate_rock_data

:parameters (?r — rover ?x — waypoint ?y - waypoint)
:precondition

(and (communicated_rock_data ?x) (at_rock_sample ?y))

reffect

(and (not (communicated_rock_data ?x)) (communicated_ rock_ data

75

?2y)))

(:action NOISE-communicate_image_data

:parameters (?x - objective ?y - objective ?m - mode ?i - camera)
:precondition

(and (communicated_image_data ?x ?m) (calibration_target ?i ?vy)

)

reffect
(and (not (communicated_image_data ?x ?m)) (communicated_image_data

2y ?m)))

TPP

This is a relatively recent planning domain that has been investigated in Operations Research
(OR) for several years. The Travelling Purchase Problem (TPP) is a known generalisation
of the Travelling Salesman Problem. We have a set of products and a set of markets. Each
market is provided with a limited amount of each product at a known price. The TPP consists
in selecting a subset of markets such that a given demand of each product can be purchased,
minimising the routing cost and the purchasing cost.

The NOISE_drive and the NOISE_on-sale noisy operators are used to randomly
change the location of a truck and to randomly change the sale conditions of some goods re-

spectively:

(:action NOISE_drive

:parameters (?t - truck ?from ?to - place)
:precondition

(and (at ?t ?from))

reffect

(and (not (at ?t ?from)) (at ?t 2?to)))

(:action NOISE_on-sale

:parameters (?g - goods ?ml - market ?11 - level ?m2 - market ?12
- level)

:precondition

(and (on-sale ?g ?ml ?11) (on-sale ?g ?m2 ?212))

ceffect

(and (on-sale ?g ?ml ?12) (not (on-sale ?g ?ml ?11)) (on-sale ?g
?m2 ?11) (not (on-sale ?g ?m2 ?12))

))

ZenoTravel

This transportation domain involves transporting people around on planes, using two different
modes of movement: fast and slow. The key to this domain is that, where the expressive power
of the numeric tracks is used, the fast movement consumes fuel faster than slow movement,
making the search for a good quality plan much harder.

For this domain, we defined five noisy operators:

76

* the NOISE-fuel operator can be used to randomly change the fuel level of an aircraft;

* the NOISE-fly and the NOISE-zoom operators can be used to randomly modify the
location of an aircraft using different amount of fuel;

* the NOISE-move-package operator can be used to randomly change the location of
a package;

* the NOISE—-debark operator can be used to randomly modify the objects inside an
aircraft.

(:action NOISE-refuel

:parameters (?a - aircraft ?c - city ?1 - flevel ?11 - flevel)
:precondition

(and (fuel-level ?a ?1) (next 211 ?21) (at ?a ?c))

ceffect

(and (fuel-level ?a ?11) (not (fuel-level ?a ?1))))

(:action NOISE-fly

:parameters (?a - aircraft ?cl ?c2 - city 211 212 - flevel)
:precondition

(and (at ?a ?cl) (fuel-level ?a ?11) (next 212 ?11))

effect

(and (not (at ?a ?2cl)) (at ?a ?c2) (not (fuel-level ?a ?11)) (fuel-level
?a ?12)))

(:action NOISE-zoom

:parameters (?a — aircraft ?cl ?c2 - city 211 212 213 - flevel)
:precondition

(and (at ?a 2?cl) (fuel-level ?a ?11) (next 212 ?11) (next 213 ?12)

)

effect

(and (not (at ?a ?cl)) (at ?a ?c2) (not (fuel-level ?a ?11)) (fuel-level
2a ?13)))

(raction NOISE-MOVE-PACKAGE

:parameters (?p — person ?cl - city ?c2 - city)
:precondition

(and (at ?p ?2cl))

reffect

(and (not (at ?p ?cl)) (at ?p ?c2)))

(:action NOISE-debark

:parameters (?p - person ?a - aircraft ?c - city)
:precondition

(and (in ?p ?a) (at ?a 2c))

:effect

(and (not (in ?p 2a)) (at ?p ?2c)))

77

C Additional results

In this section we report additional results regarding OAKPLAN.

Tables 9-11 (see page 79) show the results of the Wilcoxon signed rank test comparing
OAKPLAN-Nns with OAKPLAN-Nns-Kpgse, OAKPLAN-NnS-/Cp 4., OAKPLAN-Nns-adapt-
Kpase and OAKPLAN-Nns-adapt-K,,.4e . Each cell in Table 9 gives the result of a comparison
between the performance of OAKPLAN-Nns and another tested planner in terms of CPU-time.
In this Table, as well as in the next ones concerning an analysis based on the Wilcoxon test,
the T-distribution used by the Wilcoxon test is approximately a normal distribution when the
number of samples is sufficiently large. Therefore, the cells of the Figure contain the z-value
and the p-value characterising the normal distribution. The higher the z-value is, the more
significant the difference of the performance is. The p-value represents the level of significance
in the performance gap. We use a confidence level of 99.9%; hence, if the p-value is lower
than 0.001, then the performance of the two planners is statistically different. The third value
in each cell is the number of problems solved by at least one planner. An up arrow in these
cells indicates that the first planner named in the title performs worse than the other planner
compared, on the contrary a down arrow indicates that the first planner performs better than the
other planner compared. We considered all the test problems that can be attempted by both the
compared planners and that are solved by at least one of them. When a planner does not solve
a problem, the corresponding CPU-time is set to 1800 seconds. Tables 10 and 11 (see page 88)
give the results of the Wilcoxon signed rank test about the plan quality and distance values for
OAKPLAN-Nns and the other tested planners. The third value in each cell is the number of
problems solved by both the planners compared.

Tables 12—14 (see page 88) show the results of the Wilcoxon signed rank test comparing
OAKPLAN-Nns, OAKPLAN-Ons, OAKPLAN-small-Nns and OAKPLAN-small-Ons . Each
cell in Table 12 gives the result of a comparison between the performance of OAKPLAN-Nns
and another tested planner in terms of CPU-time. Similarly Tables 10 and 11 give the results of
the Wilcoxon signed rank test about the plan quality and distance values for OAKPLAN-Nns
and the other tested planners.

Moreover, Table 15 (see page 89) shows the results of the Wilcoxon signed rank test com-
paring OAKPLAN-Nns with DOWNWARD, LPG, METRIC-FF and SGPLAN-IPCS5. Each cell in
Table 15 gives the result of a comparison between the performance of OAKPLAN-Nns and
another tested planner in terms of CPU-time. We considered all the test problems that can be
attempted by both the planners compared and that are solved by at least one of them. When
a planner does not solve a problem, the corresponding CPU-time is set to 1800 seconds (i.e.,
the maximum CPU-time limit). The third value in each cell is the number of problems solved
by at least one planner. Tables 16 and 17 (see page 90) give the results of the Wilcoxon signed
rank test about the plan quality and distance values for OAKPLAN-Nns and the other planners
tested. The third value in each cell is the number of problems solved by both the planners
compared.

In Figures 29 — 33 (see page 80) we compare OAKPLAN-Ons vs. OAKPLAN-small-Ons
in the different planning benchmark domains considered; in particular we show the CPU time
(on a logarithmic scale) required to find the first solution, the number of different actions
with respect to the input plan of the adaptation process and the plan qualities considering dif-
ferent case bases. Similarly in Figure 34 — 39 (see page 85) we compare OAKPLAN-Nns
vs. OAKPLAN-small-Nns. In Figures 40 — 45 (see page 94) we examine the behaviour of
OAKPLAN-Ons vs OAKPLAN-Nns and in Figures 46 — 51 (see page 100) the behaviour of

78

CPU-time Analysis - OAKPLAN variants
Nns vs Nns vs Nns vs Nns vs Nns-adapt-KCpyse Vs
Nns-Krase | Nns-Kpode | Nns-adapt-KCpase | Nns-adapt-ICpode Nns-adapt-KCp,ode
z-value —-20.2328 —-29.0856 -26.8957 —-29.7681 -16.3912
p-value < 0.001 <0.001 <0.001 <0.001 <0.001
num. 11233 11234 1 1232 11232 | 1004
CPU-time Analysis - OAKPLAN variants
Nns-Cpase Vs Nns-Kpase Vs Nns-Kpgse Vs Nns-/Crrode Vs Nns-/Crrode VS
Nns-Krode Nns-adapt-Kpese | Nns-adapt-K,ode Nns-adapt-Kpese | Nns-adapt-K,ode
z-value —-23.9940 -7.3736 -8.2873 -25.1029 —-20.7260
p-value <0.001 <0.001 <0.001 <0.001 <0.001
num. 1 890 1974 1991 1975 1753

Table 9: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns,
OAKPLAN-Nns-Kpose, OAKPLAN-Nns-C, 040, OAKPLAN-Nns-adapt-KCpqse and OAKPLAN-Nns-
adapt-/C,,o4e in terms of CPU-time for our benchmark problems.

OAKPLAN-small-Ons vs OAKPLAN-small-Nns. Moreover in Figures 52 — 63 (see page 106)
we compare OAKPLAN-Nns and OAKPLAN-Ons vs the other state of the art planners exam-
ined.

In Figure 64 (see page 118) we give a graphical representation of the performance of
OAKPLAN-Nns compared to the other planners in terms of CPU-time, plan qualities and dis-
tance values. Each point corresponds to a problem solved by OAKPLAN-Nns and another
reference planner. If a point is above the solid diagonal, then OAKPLAN-Nns performs better
than the other planner and vice versa. The distance of a point from the main diagonal indicates
the performance gap (the greater the distance, the greater the gap). It easy to see that, in gen-
eral, OAKPLAN-Nns finds a plan more quickly, with a lower plan distance and similar plan
quality with respect to the other planners. Examining the CPU-time we can see that the other
planners are faster than OAKPLAN-Nns in a number of variants; this usually happens in the
simplest variants of the benchmark problems where the matching process is the most signifi-
cant part of the total adaptation process of OAKPLAN-Nns and, considering the LPG planner,
in all the variants of the Rovers domain.

Then in Figures 65 — 76 (see page 119) we examine the scatterplots produced by OAKPLAN-
Nns and OAKPLAN-Ons vs the other planners in the different planning benchmark domains.

Finally Figure 77 (see page 131) reports the Box & Whiskers plots of the similarity values
produced using the s, Kpase and K04 kernel functions. These results are grouped consid-
ering the test set problems (I5k-Gx variants) with k initial changes (reported on the top of the
Figures) and x goal changes reported on the x-axis.

79

OAKplan-Ons vs OAKplan-small-Ons -- Domain : BlocksWorld
Milliseconds

1e+06 T T T
—+— OAKplan-Ons (Speed - 213 solved)
rrrrr < OAKplan-small-Ons (Speed - 213 solved)
= OAKplan-small-Ons-matching (Sp?ed— %13 Ived;
H

*

100000

10000

Problem number

Plan distance
160 ‘

140 g

120 ‘I
100 é i
80 j‘
60 x |
j 1
w0l }& T |
20
SMM@

Problem number

50 100 150 200
Problem number

Figure 29: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the BlocksWorld variants. Here we compare OAKplan-
Ons vs OAKplan-small-Ons.

80

OAKplan-Ons vs OAKplan-small-Ons -- Domain : Logistics
Milliseconds

——— OAKplan-Ons (Speed - 216 solved)

""" *--- OAKplan-small-Ons (Speed - 215 solved)
= OAKplan-small-Ons-matching (Speed - 215 solved)

1le+06

100000 F

10000 ¢

1000 F

EEHE : m' J \Wﬂmﬁ i%ﬁ%;);ﬁf)
ol o] | N e
: Tl' I j}%a ﬁ)lﬁg | ﬁ'] %ﬂw %ﬂ [I

P
e
)@qﬁ_—*“

Ay F
Al b

600

500

400

300 |

200

100 b ¥EH

50 100 150 200
Problem number

Figure 30: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Logistics variants. Here we compare OAKplan-Ons
vs OAKplan-small-Ons.

81

OAKplan-Ons vs OAKplan-small-Ons -- Domain : ZenoTravel
Milliseconds

1e+06 T T T
—+— OAKplan-Ons (Speed - 211 solved)
""" *--- OAKplan-small-Ons (Speed - 216 solved)
= OAKplan-small-Ons-matching (STpeed - 216 solved) gﬂ
100000 F ptoal] (i 3
3
gﬂﬁx ¥
I i 25|
10000 : H o %mg@‘j@
laf
1000 . o]
200

Problem number

Plan distance
100

0 1}16 b

80 l i

70 + 'l
of H :
30 f %(i w&](ﬁﬂ'@ |
i i

200 | 1 b

150 |
Mﬁw
100 | : |
A

0 1 1 1 1
50 100 150 200

Problem number

Figure 31: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the ZenoTravel variants. Here we compare OAKplan-
Ons vs OAKplan-small-Ons.

82

OAKplan-Ons vs OAKplan-small-Ons -- Domain : Rovers

Milliseconds

1le+06

100000

—+— OAKplan-Ons (Speed - 214 solved)
-~ OAKplan-Ons-matching (Speed - 214 solved)
rrrrr *— OAKplan-small-Ons (Speed - 216 solved)
= OAKplan-small-Ons-matching (Speed - 216 solved)

10000

Problem number

Plan distance

90

80

70

60

30

20

10

3

450
400
350
300
250

200

Figure 32: CPU time

OAKplan-small-Ons.

50 100 150 200
Problem number

50 100 150 200
Problem number

(on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Rovers variants. Here we compare OAKplan-Ons vs

&3

OAKplan-Ons vs OAKplan-small-Ons -- Domain : TPP
Milliseconds

1e+06 T T T
—+— OAKplan-Ons (Speed - 211 solved)
-~ OAKplan-Ons-matching (Speed - 211 solved)
""" *--- OAKplan-small-Ons (Speed - 211 solved)
= OAKplan-small-Ons-matching (Spee?fj -211 ve%) T
It

100000 F]{
|

10000

1000

100 Il Il Il Il
50 100 150 200
Problem number
Plan distance

120

100
80
60

)

v
-
e
E— S
Hﬁéﬁx
- S
=

450 + T .
400 | T?] j ﬁf?ﬁjﬁ@g@i@g
350 |- |
300 | /
il

200

50 100 150 200
Problem number
Figure 33: CPU time (on a logarithmic scale), number of different actions with respect to the input

plan of the adaptation process and plan qualities for the TPP variants. Here we compare OAKplan-Ons
vs OAKplan-small-Ons.

84

OAKplan-Nnsvs OAKplan-small-Nns -- Domain : BlocksWorld
Milliseconds
1le+06

100000
10000

1000 } *

100 I I I I

Problem number

Plan distance
300

250

200

150

100

50 |

Problem number

500

400

300

200

100 1 1 1 1
50 100 150 200

Problem number

Figure 34: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the BlocksWorld variants. Here we compare OAKplan-
Nns vs OAKplan-small-Nns.

85

OAKplan-Nnsvs OAKplan-small-Nns -- Domain : Logistics
Milliseconds

1le+06 ‘ ‘ ‘
——+— OAKplan-Nns (Speed - 213 solved)
-~ OAKplan-Nns-matching (Speed 21 3
""" L OAKpIan -small- an(Sp &
=) C
100000

10000

50 100 150 200
Problem number

Plan distance
350

300 1
250 ¢ i

200 Tr I I ﬁ l,

150

100

S S—
L

50

50 100 150 200
Problem number

Qudlity
800

:

500
400 1
300

200

100 ga

100 150 200
Problem number

Figure 35: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Logistics variants. Here we compare OAKplan-Nns
vs OAKplan-small-Nns.

86

OAKplan-Nnsvs OAKplan-small-Nns -- Domain : DriverLog
Milliseconds

1e+06 T T T
—+— OAKplan-Nns (Speed - 197 solved)
-~ OAKplan-Nns-matching (Speefl - 197 solved), *7
""" *---- OAKplan-small-Nns (Speed - 205 s ks

a OAKpIan—smaII-Nn:s-matchié:&w};{E@iF ;
M x

Wil

e

100000 |

kR

1
10000 ¢ 1
@l

1000 |

100 Il Il Il Il
50 100 150 200
Problem number
Plan distance
140
120
100 i

80

60

40

20

Problem number

500 |

400

300

200

100

50 100 150 200
Problem number

Figure 36: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the DriverLog variants. Here we compare OAKplan-Nns
vs OAKplan-small-Nns.

87

Plan Quality Analysis - OAKPLAN variants

Nns-adapt-Kpase vs

Nns vs Nns vs Nns vs Nns vs
Nns-Krase | Nns-Kpodge | Nns-adapt-Kpese | Nns-adapt-ICrode Nns-adapt-/C,,0de
z-value -16.0029 -4.6283 -18.2599 -7.3752 —-7.7294
p-value <0.001 <0.001 <0.001 <0.001 <0.001
num. | 888 1368 1973 1 751 1720
Plan Quality Analysis - OAKPLAN variants
Nns-Kpase Vs Nns-Kpase vs Nns-Kpase Vs Nns-Kpode VS Nns-Krode Vs
Nns-Krode Nns-adapt-ICpase | Nns-adapt-KCpode Nns-adapt-ICpase | Nns-adapt-KCpode
z-value -9.3523 -1.2574 -6.0694 —8.4452 -11.7015
p-value <0.001 0.2086 <0.001 <0.001 <0.001
num. 1369 888 1649 |} 368 1 368

Table 10: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns,
OAKPLAN-Nns-Kpgse, OAKPLAN-Nns-/C,,04., OAKPLAN-Nns-adapt-ICpqse and OAKPLAN-Nns-

adapt-/C, 4. in terms of plan quality for our benchmark problems.

Plan Distance Analysis - OAKPLAN variants
Nns vs Nns vs Nns vs Nns vs Nns-adapt-Kpgse VS
Nns-Kpase | Nns-Kpode | Nns-adapt-Kpese | Nns-adapt-ICpode Nns-adapt-KCp,0de
z-value -25.6188 -16.5937 -26.8364 -23.7026 -19.6781
p-value <0.001 <0.001 <0.001 <0.001 <0.001
num. | 888 | 368 1973 1 751 1720
Plan Distance Analysis - OAKPLAN variants
Nns-Kpase Vs Nns-Kpase Vs Nns-Kpase Vs Nns-KCrode VS Nns-Crode VS
Nns-KCr0de Nns-adapt-KCpqse Nns-adapt-Kpode Nns-adapt-Kpgse Nns-adapt-Kpode
z-value -13.6294 -3.7804 -19.2003 -13.4415 -0.7513
p-value <0.001 < 0.001 <0.001 <0.001 0.4525
num. 1 369 | 888 1649 1368 368

Table 11: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns,
OAKPLAN-Nns-Kpgse, OAKPLAN-Nns-/C, 0., OAKPLAN-Nns-adapt-KCpqse and OAKPLAN-Nns-

adapt-/Cp,,qe in terms of plan distance values for our benchmark problems.

CPU-time Analysis - OAKPLAN Case Bases
Nns vs Nns vs Nns vs Ons vs Ons vs small-Nns vs
Ons small-Nns small-Ons small-Nns | small-Ons small-Ons
z-value || —25.6136 -30.1762 -11.9419 -13.3277 -11.8104 -3.3715
p-value < 0.001 <0.001 < 0.001 < 0.001 <0.001 < 0.001
num. 11265 11260 11268 11277 11272 11277

Table 12: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns,
OAKPLAN-Ons, OAKPLAN-small-Nns and OAKPLAN-small-Ons in terms of CPU-time for our

benchmark problems.

88

Plan Quality Analysis - OAKPLAN Case Bases
Nns vs Nns vs Nns vs Ons vs Ons vs small-Nns vs
Ons small-Nns small-Ons small-Nns small-Ons small-Ons
z-value || —17.4870 -3.6466 -16.3177 -17.5653 -3.2450 -16.5138
p-value < 0.001 <0.001 <0.001 <0.001 0.0012 <0.001
num. 11232 11232 11037 1 1248 + 1066 11056

Table 13: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns,
OAKPLAN-Ons, OAKPLAN-small-Nns and OAKPLAN-small-Ons in terms of plan quality for our

benchmark problems.

Plan Distance Analysis - OAKPLAN Case Bases
Nns vs Nns vs Nns vs Ons vs Ons vs small-Nns vs
Ons small-Nns small-Ons small-Nns | small-Ons small-Ons
z-value || —17.9790 -4.3791 -17.6283 -17.2818 -0.1225 -17.9139
p-value <0.001 <0.001 <0.001 <0.001 0.9025 <0.001
num. 11232 11232 11037 1 1248 1066 11056

Table 14: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns,
OAKPLAN-Ons, OAKPLAN-small-Nns and OAKPLAN-small-Ons in terms of plan distance for our

benchmark problems.

CPU-time Analysis
OAKPLAN-Nns | OAKPLAN-Nns | OAKPLAN-Nns OAKPLAN-Nns METRIC-FF
vs DOWNWARD vs LPG vs METRIC-FF | vs SGPLAN-1PC5 || vs SGPLAN-IPCS
z-value -25.1799 -13.7264 -27.5647 -25.8335 -17.6837
p-value <0.001 <0.001 <0.001 <0.001 <0.001
num. 1 1236 } 1240 } 1235 1 1239 1933
CPU-time Analysis
DOWNWARD vs | DOWNWARD vs | DOWNWARD vs LPG vs LPG vs
LPG METRIC-FF SGPLAN-IPC5 METRIC-FF | SGPLAN-IPC5
z-value -10.1772 —6.8887 -1.9748 -17.9592 —8.4884
p-value <0.001 < 0.001 0.0483 <0.001 <0.001
num. 11061 1914 995 1916 } 1054

Table 15: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns, DOWN-
WARD, LPG, METRIC-FF and SGPLAN-IPCS in terms of CPU-time for our benchmark problems.

89

Plan Quality Analysis
OAKPLAN-Nns | OAKPLAN-Nns | OAKPLAN-Nns OAKPLAN-Nns METRIC-FF
vs DOWNWARD vs LPG vs METRIC-FF vs SGPLAN-IPCS vs SGPLAN-IPCS
z-value -4.9790 —-0.2059 -19.4010 -8.0375 -13.2636
p-value <0.001 0.8368 <0.001 <0.001 <0.001
num. 1675 832 1672 1922 1 671
Plan Quality Analysis
DOWNWARD vs | DOWNWARD vs | DOWNWARD vs LPG vs LPG vs
LPG METRIC-FF SGPLAN-IPC5 METRIC-FF | SGPLAN-IPC5
z-value —3.4888 —12.4853 -2.2506 -16.5751 -5.8731
p-value <0.001 < 0.001 0.0244 <0.001 <0.001
num. } 458 1440 613 1599 1715

Table 16: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns, DOWN-
WARD, LPG, METRIC-FF and SGPLAN-IPCS in terms of plan quality for our benchmark problems.

Plan Distance Analysis
OAKPLAN-Nns OAKPLAN-Nns OAKPLAN-Nns OAKPLAN-Nns METRIC-FF
vs DOWNWARD vs LPG vs METRIC-FF | vs SGPLAN-IPC5 || vs SGPLAN-IPC5
z-value -21.1373 —24.3809 -20.1907 -24.6913 -8.3423
p-value <0.001 <0.001 <0.001 <0.001 <0.001
num. 1 675 | 832 1672 1 922 1 671
Plan Distance Analysis
DOWNWARD vs | DOWNWARD vs | DOWNWARD vs LPG s LPG s
LPG METRIC-FF SGPLAN-IPC5 METRIC-FF | SGPLAN-IPC5
z-value -6.4373 -0.3193 -3.8209 -14.9301 -10.1334
p-value <0.001 0.7495 <0.001 <0.001 <0.001
num. } 458 440 } 613 1599 1715

Table 17: Results of the Wilcoxon signed rank test about the performance of OAKPLAN-Nns, DOWN-
WARD, LPG, METRIC-FF and SGPLAN-IPCS5 in terms of plan distance values for our benchmark prob-

lems.

90

OAKplan-Nnsvs OAKplan-small-Nns -- Domain : ZenoTravel
Milliseconds

1e+06 T T T

—+— OAKplan-Nns (Speed - 211 solved)
——— OAKplan-Nns-matching (Speed - ;
""" *--- OAKplan-small-Nns (Speg

=)

100000

10000

1000

Problem number

Plan distance
250

200 g

:

Il
|

100

50

= } :
=l P o

100

50

100 150 200
Problem number

Figure 37: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the ZenoTravel variants. Here we compare OAKplan-
Nns vs OAKplan-small-Nns.

91

OAKplan-Nnsvs OAKplan-small-Nns -- Domain : Rovers
Milliseconds

1le+06 w ‘ ‘
—+— OAKplan-Nns (Speed - 214 solved)
-~ OAKplan-Nns-matching (Speed - 214 solved)
rrrrr - OAKplan-small-Nns (Speed - 216 solved)
= OAKplan-small-Nns-matching (Speed - 216 solved)

Problem number

Plan distance

450 Mﬁg@g
a0 | | flﬁgs@g
l

350 | M&

300 |

l
250 + %W

200

50 100 150 200
Problem number
Figure 38: CPU time (on a logarithmic scale), number of different actions with respect to the input plan

of the adaptation process and plan qualities for the Rovers variants. Here we compare OAKplan-Nns vs
OAKplan-small-Nns.

92

OAKplan-Nns vs OAKplan-small-Nns -- Domain : TPP
Milliseconds

—— OAKplan-Nns (Speed - 210 solved)
————————— OAKplan-Nns-matching (Speed - 210 solved)

""" = OAKplan-small-Nns (Speed - 210 sojved)
= OAKplan-small-Nns-matching (Speed; 2107solved) ’[
! i
1
|

1le+06

100000 F

10000

1000

100

50 100 150 200

1 dopdh bl
LI IRT IR) - 1/* I

g #fﬂ% M&M il i

Quality Problem number

N [

| o
f
r
l

300 | T Tl
w o

50 100 150 200
Problem number
Figure 39: CPU time (on a logarithmic scale), number of different actions with respect to the input

plan of the adaptation process and plan qualities for the TPP variants. Here we compare OAKplan-Nns
vs OAKplan-small-Nns.

93

OAKplan-Ons vs OAKplan-Nns -- Domain : BlocksWorld
Milliseconds

1e+06 T T T
~— OAKplan-Ons (Speed - 213 solved)

""" oo OAKpIara—JK\lns(Speed*%lw solved)

? tohifg (18

100000

10000

1000 Il Il Il Il
50 100 150 200

Problem number

Plan distance
300

250

200

150

100

50 |

0

Qudlity
650 \

600
550 |
500 |
450
400
350
300 |
250
200

150 ki);ig 1

100

50 100 150 200
Problem number

Figure 40: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the BlocksWorld variants. Here we compare OAKplan-
Ons vs OAKplan-Nns.

94

OAKplan-Ons vs OAKplan-Nns -- Domain : Logistics
Milliseconds

1e+06 T T T T
—+— OAKplan-Ons (Speed - 216 solved)
,,,,, *-- OAKplan-Nns (Speed - 213 solved)
o OAKplan-Nns-matching gSp%— gﬁ
100000 5

10000

1000 fo g 4

100 Il Il Il Il
50 100 150 200

Problem number

Plan distance
350

300 ‘ R
250
200
150
100

50

Problem number

700

600

500

400

300

200

100 A

100 150 200
Problem number

Figure 41: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Logistics variants. Here we compare OAKplan-Ons
vs OAKplan-Nns.

95

OAKplan-Ons vs OAKplan-Nns -- Domain : DriverLog
Milliseconds

1e+06 T T T
—+— OAKplan-Ons (Speed - 200 solved)
,,,,, - OAKplan-Nns (Speed - 197 solved) Mﬁﬁ
= OAKplan-Nns-matching (Speef— 197 solved)s l

Py

100000 |

1000 jal 1 1 1 1
50 100 150 200
Problem number
Plan distance
120
100 ¥ |
80

60

40

20

Problem number

500

400

300

200

100

0 1 1 1 1
50 100 150 200

Problem number

Figure 42: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the DriverLog variants. Here we compare OAKplan-Ons
vs OAKplan-Nns.

96

OAKplan-Onsvs OAKplan-Nns -- Domain : ZenoTravel

Milliseconds
1e+06 T T T
—+— OAKplan-Ons (Speed - 211 solveg)
rrrrr *--- OAKplan-Nns (Speed - 211 selved) *
® OAKpIan—anmatching*(%eq;j 2, ‘ " *ﬁ

100000 :

10000

1000 ¢

100 Il Il Il Il
50 100 150 200

Problem number

Plan distance
250

200 |- .
150
100

50

Qudlity
450

400
350
300
250
200
150
100

50 |,

Problem number

Figure 43: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the ZenoTravel variants. Here we compare OAKplan-
Ons vs OAKplan-Nns.

97

OAKplan-Onsvs OAKplan-Nns -- Domain : Rovers
Milliseconds
1le+06

—+— OAKplan-Ons (Speed - 214 solved)
-~ OAKplan-Ons-matching (Speed - 214 solved)
- OAKplan-Nns (Speed - 214 solved)
o2 OAKplan-Nns-matching (Speed - 214 solved)

*

100000

1%00 Il Il Il Il
50 100 150 200

Problem number

Plan distance
920

70 R

60 | R

30

Problem number

450

400

350

300

250

200 1 1 1 1
50 100 150 200

Problem number

Figure 44: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Rovers variants. Here we compare OAKplan-Ons vs
OAKplan-Nns.

98

OAKplan-Onsvs OAKplan-Nns -- Domain : TPP
Milliseconds

1le+06 ‘ T ‘
——+— OAKplan-Ons (Speed - 211 solved)

- OAKplan-Ons-matching (Speed - 211 solved)

""" x---- OAKplan-Nns (Speed - 210 solved) * ¥
OAKpIan—an—matchlng (Speed - 24 golv ‘

X

100000 F

10000

D%D” Dmgﬂ n‘_E
@] Egm@]§ EE D@DEEE%]J%@

1000

100 Il Il Il Il
50 100 150 200

Problem number

Plan distance
120 2

100 b
80 R

60

40

20

450

400

350

300

250

50 100 150 200
Problem number

Figure 45: CPU time (on a logarithmic scale), number of different actions with respect to the input
plan of the adaptation process and plan qualities for the TPP variants. Here we compare OAKplan-Ons
vs OAKplan-Nns.

99

OAKplan-small-Ons vs OAK plan-small-Nns -- Domain : BlocksWorld
Milliseconds

1le+06 T \
—— OAKplan-small-Ons (Speed -
——— OAKplag-gmall-Gns-matching (Speed - 21

,,,,, *—- OAKpl ns:(Speed -2)‘ lv*ﬁ%ﬁ

100000

10000

1000

100 Il Il Il Il
50 100 150 200

Problem number

Plan distance
300

250

200

150

100

Problem number

500

400

300

200

100 1 1 1 1
50 100 150 200

Problem number

Figure 46: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the BlocksWorld variants. Here we compare OAKplan-
small-Ons vs OAKplan-small-Nns.

100

OAKplan-small-Ons vs OAK plan-small-Nns -- Domain : Logistics
Milliseconds

1le+06 T ‘ ‘
——+— OAKplan-small-Ons (Speed - 215 solved)
-~ OAKplan-small-Ons-matching (Speed - 215 solved)
,,,,, x-- OAKplan-small-Nns (Speed - 214 solved)
- OAKplan-small-Nns-matching (Speed - 214 solved) * %,
100000 %

10000

1000

100 Il Il Il Il
50 100 150 200

Problem number

Plan distance
350

300 R
250
200
150
100

50 K

Problem number

700

500

400

300

200

100

50 100 150 200
Problem number

Figure 47: CPU time (on a logarithmic scale), number of different actions with respect to the input
plan of the adaptation process and plan qualities for the Logistics variants. Here we compare OAKplan-
small-Ons vs OAKplan-small-Nns.

101

Milliseconds

le+06

— OAKpIan -small-Ons (Speed - 206 solved)
————————— OAK plan-small-Ons-matching{Speed - 206 “
""" oo OAKpIan -small- an(Speed 205 S

100000

10000

1000

100 Il Il Il Il
50 100 150 200
Problem number
OAKplan-small-Ons vs OAKplan-small-Nns -- Domain : DriverLog
Plan distance

250

200
150

100

50

Problem number

400

300

200

100

50 100 150 200
Problem number

Figure 48: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the DriverLog variants. Here we compare OAKplan-
small-Ons vs OAKplan-small-Nns.

102

OAKplan-small-Ons vs OAK plan-small-Nns -- Domain : ZenoTravel
Milliseconds

1e+06 T T T
—+— OAKplan-small-Ons (Speed - 216 solved)
-~ OAKplan-small-Ons-matching (Speed - 216 solved)
OAKpIan small- an(Speadr%%(:l ?Essolved ¢

100000

10000

1000

100

Problem number

Plan distance
250

200 + 1
150
100

50

Qudlity
450

400 : 1
350
300
250
200
150
100

50 |,

50 100 150 200
Problem number

Figure 49: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the ZenoTravel variants. Here we compare OAKplan-
small-Ons vs OAKplan-small-Nns.

103

OAKplan-small-Ons vs OAKplan-small-Nns -- Domain : Rovers
Milliseconds
100000

—+— OAKplan-small-Ons (Speed - 216 solved)
-~ OAKplan-small-Ons-matching (Speed - 216 solved)
""" *--- OAKplan-small-Nns (Speed - 216 solved)

= OAKplan-small-Nns-matching (Speed - 216 solved)

lmoo Il Il Il Il
50 100 150 200

Problem number

Plan distance
920

60 | R

NI
| i

Problem number

450 M@f

400

350

300 | I R

250 E‘%

200 1 1 1 1
50 100 150 200

Problem number

Figure 50: CPU time (on a logarithmic scale), number of different actions with respect to the input
plan of the adaptation process and plan qualities for the Rovers variants. Here we compare OAKplan-
small-Ons vs OAKplan-small-Nns.

104

OAKplan-small-Ons vs OAK plan-small-Nns -- Domain : TPP
Milliseconds

1e+06 T T T
—+— OAKplan-small-Ons (Speed - 211 solved)

———————— OAKplan-small-Ons-matching (Speed - 211 solved)

""" oo OAKpIan small- an(Speed 210 solved) *

100000

10000

1000

100 I I I I

Problem number

Plan distance
120 2

100 b
80 b

60

40

20

450

400

350

300

200

Problem number

Figure 51: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the TPP variants. Here we compare OAKplan-small-Ons
vs OAKplan-small-Nns.

105

OAKplan-Nns vs LPG vs Downward -- Domain : BlocksWorld

Milliseconds

1le+08

le+07
1le+06

pK:

100000

10000 |

1000

——— OAKplan-Nns (Speed - 187 solved)
——— LPG (Speed - 73 solved)
,,,,, *-—- Downward (Speed - 64 solved)

ﬁgf ;ﬁ% /ﬁ\ I\ @@fﬁfw

\/\

100 150 200
Problem number

Plan distance

900
800
700
600
500

400 !

200 |+
100 b

300

‘]\ ,E\ \ |

L
Ll le

H w\
W Mﬁﬂ

|
Hh

Quality
1400

1200

1000

Figure 52: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the BlocksWorld variants. Here we compare OAKplan-

50 150

g
Problem number

100
Problem number

150 200

Nns vs LPG vs Downward.

106

OAKplan-Nns vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : Logistics
Milliseconds
1e+08

—+— OAKplan-Nns (Speed - 213 solved)

~ LPG (Speed - 211 solved)

1e+07 | x- Downward (Speed - 198 solved) 3
= Metric-FF (Speed - 171 solved)

1let+06

100000

10000

1000

100

10 Il Il Il Il
50 100 150 200

Problem number

Plan distance
1000 ‘

900 |
800 |
700 |
600 |
500 |
200 |
300 |
200 |
100 | gl 2

oY

Problem number

Quality
1000
900
800
700
600 [
500 |
400 +
300

200
S, S
100 ’_ﬁ.ﬁv;;[ﬁf 1 i

O L L L L
50 100 150 200

Problem number

Figure 53: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Logistics variants. Here we compare OAKplan-Nns
vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS.

107

OAKplan-Nns vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : DriverLog
Milliseconds

1e+08 T ‘ ‘
—— OAKplan-Nns (Speed - 197 solved)
,,,,,,,,, LPG (Speed - 122 solved)
1e+07 -x- Downward (Speed - 76 solved) 1
- Metric-FF (Speed - 65 solved)
1e+06 | SGPLAN-IPC5 (Speed-- 106, solved) ,
I pormd
Il [|
100000 gt] ' j
* '
10000 i j
1000 1
100 1
10 L— ‘ ‘ ‘ ‘
50 100 150 200
Problem number
Plan distance
900
800 | AV i
700 | | 1
600 | 1
500 - 1
400 F | 1
300 - 1
200 | b]
Low e T
i TR |
100 vy i I | |
0 e DA A A A A
50 100 150 200
Problem number
Quadlity
600
o0 | TZ’S?‘W\;
o .,
400 | - Liaed |
|
300 | | 1
200 | 2 1
[n] |
100 | hatteg |
..
B e
0 : ‘ : ‘
0 100 150 200

Problem number

Figure 54: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the DriverLog variants. Here we compare OAKplan-Nns
vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS.

108

OAKplan-Nns vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : ZenoTravel
Milliseconds

1e+08 T T T
—+— OAKplan-Nns (Speed - 211 solved)
~ LPG (Speed - 216 solved)
1e+07 | > Downward (Speed - 130 solved)]
= Metric-FF (Speed - 164 solved)
SGPLAN-IPCS (Speed - 180 solved)

1e+06 F T #u

3<><>k<>3<
x &%f<»
gﬁ ZJH : ’q}

100000

10000

1]
1000 Fory gn o
il

100 I I I I

Problem number

Plan distance
700

600 - 2 Sl R
500 |
400 |
300 |
200 |

100

B—

s%%%;%
o L M%ﬁﬁ

Quadlity
450

400
350
300 |
250
200
150
100

SO
ey

0 L L L L
50 100 150 200

Problem number

Figure 55: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the ZenoTravel variants. Here we compare OAKplan-
Nns vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS5.

109

OAKplan-Nnsvs LPG vs Metric-FF vs SGPLAN-IPC5 -- Domain : Rovers

Milliseconds
1le+08 ‘ ‘ ‘
—+— OAKplan-Nns (Speed - 214 solved)
~ LPG (Speed - 216 solved)
= Metric-FF (Speed - 198 solved)
1e+07 SGPLAN-IPC5 (Speed - 216 solved) E
|90 Gy]
o a}
let06 ¢ bpa” ol %%%%\ @m&%m @‘33%\ @nﬁ%@ﬂg‘%@ Eﬂgf %@
ol DEF rﬁ\
" W@'ﬂ% 41 =
100000 ”m jm wm
10000 E
1000 Il Il Il Il
50 100 150 200
Problem number
Plan distance

700

600

500

400

300

200 E

100 E

0 WWW% 5 MWMMMMM
50 100 150 200
Problem number
Quadlity

500

450

400

350 |

300

250

200

150 Il Il Il Il

Figure 56: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Rovers variants. Here we compare OAKplan-Nns vs

50 100 150 200
Problem number

LPG vs Metric-FF vs SGPLAN-IPCS.

110

OAKplan-Nns vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : TPP
Milliseconds

1e+08 T T T
—+— OAKplan-Nns (Speed - 210 solved)
-~ LPG (Speed - 2 solved)
1e+07 | > Downward (Speed - 211 solved)]
= Metric-FF (Speed - 77 solved)
SGPLAN IPC5(Speed 211 solved)

1le+06 ?ﬂ]@ﬂl]‘-t;:_u e ‘—h - 7‘%,_‘ Bl f-m qjj b
g g, ¥ LD DE%’TJ : By
100000 " % Al
&&*‘#&k«?‘ g;;i o ié
’ I “\ ‘E \f M@ W \1
10000 ﬁ N ’{&
lﬁwf \“ Y ML i
1000 + 1
100 ! ‘ ‘ ‘
Problem number
Plan distance

600 7
500
400
300

200 !

100 2080 | ::

; MN%JM mmmwmA f‘ﬁM FM i

200
Problem number

Quadlity
500
450 -
400 - :
350

X
300 + - *U %
T I *WN& {1 A Ji o

SR e

200 L L L L
50 100 150 200

Problem number

Figure 57: CPU time (on a logarithmic scale), number of different actions with respect to the input
plan of the adaptation process and plan qualities for the TPP variants. Here we compare OAKplan-Nns
vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS.

111

OAKplan-Ons vs LPG vs Downward -- Domain : BlockswWorld
Milliseconds

1e+08 T T T
—+— OAKplan-Ons (Speed - 213 solved)
————————— LPG (Speed - 73 solved)
""" *—-- Downward (Speed - 64 solved)
1letQ7 E

1le+06
pK:
100000

10000 |

1000 Il Il Il Il
50 100 150 200

Problem number

Plan distance
900 ¥

800 i -
700 -
600 | |
500
400
300
200
100

Problem number
Quality
1400

1200 5 |
1000 e 4
800
600

400

200 £ . -

50 100 150 200
Problem number

Figure 58: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the BlocksWorld variants. Here we compare OAKplan-
Ons vs LPG vs Downward.

112

OAKplan-Ons vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : Logistics
Milliseconds

1e+08 T T T
—+— OAKplan-Ons (Speed - 216 solved)
~ LPG (Speed - 211 solved)
1e+07 | x- Downward (Speed - 198 solved) 3
= Metric-FF (Speed - 171 solved)
i SGPLAN-IPC5 (Speed - 216 souﬁeﬁ el L S
1e+06 am —
R i
100000 il M
10000 e et 3
,Mm@ﬁu
1000 Lt L]
B
R
100 []
10 Il Il Il Il
50 100 150 200
Problem number
Plan distance
1000 T
900
800
700
600 -
500 r
400 -
300 | ROt
SRR
200 ﬁﬁ’*f%?g .
% :“‘DJEEW 0 D' iR
100 |.# L S DD
o ww@#wwmmmvﬁm%
100 150 200
Problem number
Quality
1000 T
900
800
700
600
500
400
300
200
100
O Il Il Il Il
50 100 150 200
Problem number

Figure 59: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Logistics variants. Here we compare OAKplan-Ons
vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS.

113

OAKplan-Ons vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : DriverLog

Milliseconds
1e+08 T T T
—+— OAKplan-Ons (Speed - 200 solved)
————————— LPG (Speed - 122 solved)
1e+07 | % Downward (Speed - 76 solved) 3
= Metric-FF (Speed - 65 solved)
i SGPLAN-IPCS (Speed- 106, solved)]
1e+06 XKy —
f%f”r’*mﬁw |
100000 . Wa ww |]
10000 - E
1000]
100 E
10 Il Il Il Il
50 100 150 200
Problem number
Plan distance
900
800 b
700 b
600 1
500 + h
400 + h
300 + h
200 | Yy B 1
bl |
100 [o PRI ART b 1
;] i i] 1ol I A
o BET : WW%MWJ ﬁ&%ﬁh@“& Ll &VL VWW\
50 100 150 200
Problem number
Quadlity
600
— ‘\\
500 | e il
400 | | :
|
/
indeet|
300 + T& h
200 y} b
[n] |
100 b
0 Il Il Il Il
50 100 150 200

Problem number

Figure 60: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the DriverLog variants. Here we compare OAKplan-Ons
vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS.

114

OAKplan-Ons vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : ZenoTravel
Milliseconds
1e+08

—+— OAKplan-Ons (Speed - 211 solved)

,,,,,,,,, LPG (Speed - 216 solved)

1e+t07 L =---- Downward (Speed - 130 solved) E

= Metric-FF (Speed - 164 solved)
SGPLAN-IPC5 (Speed - 180 solved)

1le+06

100000

10000

1]
1000 {(}"‘\
cl

100 Il Il Il Il
50 100 150 200

Problem number

Plan distance
700

600 | SHIFPRR K o i 7
500
400
300
200

100

Problem number

250

L]

L
T 1
L Y 4

200
150
100

50
or

50 100 150 200
Problem number

Figure 61: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the ZenoTravel variants. Here we compare OAKplan-
Ons vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS5.

115

OAKplan-Onsvs LPG vs Metric-FF vs SGPLAN-IPC5 -- Domain : Rovers
Milliseconds

1e+08 ‘ ‘ ‘
—+— OAKplan-Ons (Speed - 214 solved)
~ LPG (Speed - 216 solved)
= Metric-FF (Speed - 198 solved)
1e+07 SGPLAN-IPC5 (Speed - 216 solved) E

le+06 0 | D%@%@& %%%D @‘3:‘%‘ @&%@ﬂﬁ%@mﬁf %@a

100000 jVLﬂ fﬁl Wﬁ ek P %@WW WMME

10000

1000 Il Il Il Il
50 100 150 200

Problem number

Plan distance
700

600

500

400

300

200

100

450
400
350 |
300

250

200

150 ! ! ! !
50 100 150 200

Problem number

Figure 62: CPU time (on a logarithmic scale), number of different actions with respect to the input plan
of the adaptation process and plan qualities for the Rovers variants. Here we compare OAKplan-Ons vs
LPG vs Metric-FF vs SGPLAN-IPCS.

116

OAKplan-Ons vs LPG vs Downward vs Metric-FF vs SGPLAN-IPC5 -- Domain : TPP
Milliseconds

1e+08 T T T
—+— OAKplan-Ons (Speed - 211 solved)
~——— LPG (Speed - 2 solved)
rrrrr x--- Downward (Speed - 211 solved)
1letQ7 = Metric-FF (Speed - 77 solved) E
SGPLAN-IPC5 (Speed - 211 solved)
1e+06 HE@_;?QL‘{E L‘f‘;%”] ~D n ‘im B-m n_ui IR
i oo DE‘L k‘_—‘ ’ju ! ¥ ¥ i ;@4’52&*
P R b 2 X BT ormedi My
100000 | * o @Wgﬁé&%ﬁ% w o
o * x Sk %@% ; \KY j I T 1A
K | H Ml ‘ [
in T TR i
| | i | ‘ +
LN T ey e A
;&W T LU U BT |
ey | !
1000 : ‘ : ‘
50 100 150 200
Problem number
Plan distance
600 ¥
500
400
300
200
w0 pBATET LT : :]
e At AN | N1
-‘ ¢ 1A W | I} | .
o bt g Pt A AN A A
50 100 150 200
Problem number
Quadlity
500
450
400
350
300
250
200 ! ‘ : ‘

50 100 150 200
Problem number

Figure 63: CPU time (on a logarithmic scale), number of different actions with respect to the input
plan of the adaptation process and plan qualities for the TPP variants. Here we compare OAKplan-Ons
vs LPG vs Downward vs Metric-FF vs SGPLAN-IPCS.

117

CPU-time LPG.s, Metric-FF, Downward and SGPLAN5 (milliseconds) Plan metric value for LPG.q, Metric-FF, Downward and SGPLAN5
1000 T

% oy X =
le+06 * B 1
100000 | B
a < x s &
*
5
100 B
10000 - b ;
LK
o
% * b - s %
- X
1000 | . e 4 4
SRR
X %
’%f *% OAKplan-Nns vs LPG OAKplan-Nns vs LPG
Siam % §(OAKpIan-an vs Downward 4 OAKplan-Nns vs Downward ~ ~
X2 OAKplan-Nns vs Metric-FF ~ x OAKplan-Nns vs Metric-FF ~ x
R %%f)AKplan-an vs SGPLAN-IPC5 * OAKplan-Nns vs SGPLAN-IPC5 *
100 I X o 1 L 10 |
100 1000 10000 100000 1e+06 10 100 1000
CPU-time OAKplan-Nns.s (milliseconds) Plan metric value for OAKplan-Nns.q

Plan distance values for LPG, Metric-FF, Downward and SGPLAN5

L *¥ o]
+ * g g i ¥ ot %% p {
%]
bk g p ! i)% : ’ﬁfA |
A : . ; v A]
A N fashi o} = %
i M B 3 v]
: N 2 e
Ry K7~
é E N § K&** g
wr 1T #]
L X § % X x X A< % J
L §2 " X %{g 4
L * % “]
| A 2 %]
A ﬁ A B u
i A N S 4a 1
*
& 0%) ¥
10 A % -8]
b * X A *]
+ X -]
- X ; ° 4
L % x OAKplan-Nns vs LPG |
. OAKplan-Nns vs Downward 2
OAKplan-Nns vs Metric-FF =
L OAKplan-Nns vsI SGPLAN-IPC5 *
1 10 100 1000

Plan distance for OAKplan-Nns

Figure 64: CPU-time, plan qualities and plan differences of OAKPLAN-Nns vs DOWNWARD, LPG,
METRIC-FF and SGPLAN-IPCS.

118

CPU-time (milliseconds) of the other planners

Plan metric values of the other planners

T T % T
1e+06 |- :
+
£ + +
L + +
ggi Y o+ +:f;; ’
100000 | Tyt A . L
+ 4
¥
+ E: ++++
“ +
"
%
e 100 | B
10000 +F
¥
1000
OAKplan-Nns vs LPG-sol ~ + OAKplan-Nns vs LPG-sol +
) QAKpIan-an Vs Dpwnward-sol OA‘KpIan-an vs Downward-sol
100 10
100 1000 10000 100000 1e+06 10 100

CPU-time of OAKplan-Nns (milliseconds) in the BlocksWorld domain

Plan metric values of OAKplan-Nns in the BlocksWorld domain

Plan distance values of the other planners

1000 T——— T —— T
[x /
L .)]
+ +
I % ; Py LB +* *f,*fij +++ A
e T e]
10 B
OAKplan-Nns vs LPG-sol +
| OAKplan-Nns vs Downward-sol
1 It n n n T n n n i n n n i
1 10 100 1000

Plan distance values of OAKplan-Nns in the BlocksWorld domain

1000

Figure 65: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Nns and the other planners in the BlocksWorld domain.

119

CPU-time (milliseconds) of the other planners

1le+06

100000

10000

1000

100

100

Plan metric values of the other planners

+ O
e + ﬁ OAKplan-Nns vs LPG-sol
¥, cf+ OAKplan-Nns vs Downward-sol

*
B 4% OAKplan-Nns vs Metric-FF-sol
% quan-an Vs SGPL‘AN-|PC5-SO|

+
*
o

100 |-

OAKplan-Nns vs LPG-sol

OAKplan-Nns vs Downward-sol
OAKplan-Nns vs Metric-FF-sol

OAKpIe‘m-an vs SGPLAN-IPC5-sol

0% % +

1000
CPU-time of OAKplan-Nns (milliseconds) in the Logistics domain

1000 —— T T
[+ g + 4 #ﬁu O+ ié% = : ﬁi %ﬁ Dé]
r ﬁ+ i @% + BB DA g % @}‘F 1
B + X A
L .]
100 | B
L X 4
10 B
| OAKplan-Nns vs LPG-sol ~ +
OAKplan-Nns vs Downward-sol
OAKplan-Nns vs Metric-FF-sol ~ *
. OAKplan-Nns vs SGIPLAN-IPCS-SOI o
1 I n n PR R n n n PR T n n PR T
1 10 100

10000 100000

1e+06

Plan distance values of the other planners

100
Plan metric values of OAKplan-Nns in the Logistics domain

Plan distance values of OAKplan-Nns in the Logistics domain

1000

1000

Figure 66: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Nns and the other planners in the Logistics domain.

120

CPU-time (milliseconds) of the other planners

Plan metric values of the other planners

T T T T
° #
1e+06 % Ve B
x +
*" o0 iy
& g
*
pe
X
100000 % B
i “
:
= ¥ 100 4
10000 * 4 1
- i ¥
.
+ * ¥
X
X
4
1000 B
40
+ 0 OAKplan-Nns vs LPG-sol ~ + OAKplan-Nns vs LPG-sol +
*g O@&(plaﬂ-an vs Downward-sol OAKplan-Nns vs Downward-sol ~ x
+ Kplan-Nns vs Metric-FF-sol % OAKplan-Nns vs Metric-FF-sol %
Oﬁp}an-an vs SGPLAN-IPC5-sol O OAKplan-Nns vs SGPLAN-IPC5-sol O
100 L St 1 L 1 10 L
100 1000 10000 100000 1e+06 10 100 1000

CPU-time of OAKplan-Nns (milliseconds) in the DriverLog domain

Plan distance values of the other planners

Plan metric values of OAKplan-Nns in the DriverLog domain

1000 —— T T
[n = T ' 1
[e s |
I ¥ 0" "]
) ¥
y R
00 7 £ .
[% %;ﬁﬁ]
I oS :
. % Ty]
é +

I X]
10 F ¥ .
[n]

| OAKplan-Nns vs LPG-sol ~ +

OAKplan-Nns vs Downward-sol

OAKplan-Nns vs Metric-FF-sol ~ *

. OAKplan-Nns vs SGIPLAN-IPCS-SOI o
1 I n n PR R n n n PR T n n n PR T

1 10 100 1000

Plan distance values of OAKplan-Nns in the DriverLog domain

Figure 67: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Nns and the other planners in the DriverLog domain.

121

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
000
T T T
® éﬁ*é .
®
® %, ®
% "l
+ +
+y ++++$ I+¢£+é§—# oy
SRR TN (
+
= @ | _— s 55
®

1e+06 |-

100000

TR ¥ %x;xxxxxx x s

By
" 5 s 100 |-
10000

:
0%
+®

1000 -

OAKplan-Nns vs LPG-sol ~ + OAKplan-Nns vs LPG-sol
OAKplan-Nns vs Downward-sol OAKplan-Nns vs Downward-sol

OAKplan-Nns vs Metric-FF-sol % OAKplan-Nns vs Metric-FF-sol
100) OAKRIan-an Vs SGPL‘AN-IPCS-soI q 10 OAKpIe‘m-an vs SGPLAN-IPC5-sol

100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Nns (milliseconds) in the ZenoTravel domain Plan metric values of OAKplan-Nns in the ZenoTravel domain

0% % +

Plan distance values of the other planners

I +oF 4 b R R I i
F + B0 SOEDEE L O O e
| ® * ’E #x e e ® E
=
L + 4
+ % %E
= X "
fo g R
100 L xRN BxX +x 5 %ﬂi % X X4 7
L 3 X ,"%Jr %§ XX*%]
[2]
et g s ealay me *]
I ® x%%§%§& G g W]
% 3
| o g X - m@ L N]
X %
® < mE, ¥ ®
I X + X 23] . X)
+
= =
10 @ ¥ i
L x]
F B = X = i
[%]
| 2 ® OAKplan-Nns vs LPG-sol ~ +
. OAKplan-Nns vs Downward-sol
OAKplan-Nns vs Metric-FF-sol *
o OAKplan-Nns vs SGIPLAN-IPCS-SOI O
1 It n n n T n n n n T n n n n T
1 10 100 1000

Plan distance values of OAKplan-Nns in the ZenoTravel domain

Figure 68: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Nns and the other planners in the ZenoTravel domain.

122

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
000

T T T
1e+06 |- B
100000 |- B
n
cdan
+
i 100 | 1
ek
10000 |- Finatiid §
1000 B
OAKplan-Nns vs LPG-sol ~ + OAKplan-Nns vs LPG-sol ~ +
OAKplan-Nns vs Metric-FF-sol % OAKplan-Nns vs Metric-FF-sol %
) OAKRIan-an Vs SGPL‘AN-IPCS-soI q OAKpIa‘m-an vs SGPLAN-IPC5-sol a]
100 10
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Nns (milliseconds) in the Rovers domain Plan metric values of OAKplan-Nns in the Rovers domain

Plan distance values of the other planners

i i 1
ﬁ g =] 4
i * % i
100 B
10 B
I OAKplan-Nns vs LPG-sol ~ + |
OAKplan-Nns vs Metric-FF-sol ~ *
g OAKplan-Nns vs SGIPLAN-IPCS-SOI O
1 It n n n T n n n i n n n i
1 10 100 1000

Plan distance values of OAKplan-Nns in the Rovers domain

Figure 69: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Nns and the other planners in the Rovers domain.

123

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
000

T
1e+06 |- B
+
+ X
63
100000 |- B
100 B
10000 B
1000 B
OAKplan-Nns vs LPG-sol ~ + OAKplan-Nns vs LPG-sol +
OAKplan-Nns vs Downward-sol OAKplan-Nns vs Downward-sol ~ x
OAKplan-Nns vs Metric-FF-sol % OAKplan-Nns vs Metric-FF-sol %
) OAKRIan-an Vs SGPL‘AN-IPCS-soI q OAKpIe‘m-an vs SGPLAN-IPC5-sol a]
100 10
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Nns (milliseconds) in the TPP domain Plan metric values of OAKplan-Nns in the TPP domain

Plan distance values of the other planners

I E oo % »
O X
F % X ¥ é 1
| g ’ O]
o8 5::
Q R
L § X 5 i
;
o
100 % B
[*]
i o]
10 B
[%]
| OAKplan-Nns vs LPG-sol ~ +
OAKplan-Nns vs Downward-sol
OAKplan-Nns vs Metric-FF-sol ~ *
g OAKplan-Nns vs SGIPLAN-IPCS-SOI O
1 It n n n T n n n i n n n i

1 10 100 1000
Plan distance values of OAKplan-Nns in the TPP domain

Figure 70: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Nns and the other planners in the TPP domain.

124

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
0

T T T 1 T
X
1e+06 | g i
"
" 5
%
g € i
+
t a2 & §
100000 |- +: B ’
+ +
5 A
i
4 +
&
G
100 B
+
10000 f{ B
1000 B
OAKplan-Ons vs LPG-sol ~ + OAKplan-Ons vs LPG-sol +
) QAKpIan-Ons Vs Dpwnward-sol OA‘KpIan»Ons vs Downward-sol
100 10
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Ons (milliseconds) in the BlocksWorld domain Plan metric values of OAKplan-Ons in the BlocksWorld domain

Plan distance values of the other planners

[X]
I x
| .]
+ - ++
I % i ¥ 2 % $i+i+ 1
T A | G
10 B
OAKplan-Ons vs LPG-sol +
) g OAKplan-Ons V.S Downward-sol
1 It n n n T n n n n T n n n n T

1 10 100 1000
Plan distance values of OAKplan-Ons in the BlocksWorld domain

Figure 71: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Ons and the other planners in the BlocksWorld domain.

125

CPU-time (milliseconds) of the other planners

Plan metric values of the other planners

T T
1e+06 |-
#
-
]
E
100000 | i
£ g4
100 B

10000
1000

OAKplan-Ons vs LPG-sol ~ + OAKplan-Ons vs LPG-sol +

OAKplan-Ons vs Downward-sol OAKplan-Ons vs Downward-sol

OAKplan-Ons vs Metric-FF-sol ~ * OAKplan-Ons vs Metric-FF-sol ~ *

) OAKp’an-Ons Vs SGPL‘AN-IPCS-soI q OAKpI§n-Ons vs SGPLAN-IPC5-sol a]

100 10
100 1000 10000 100000 1e+06 10 100

CPU-time of OAKplan-Ons (milliseconds) in the Logistics domain

Plan metric values of OAKplan-Ons in the Logistics domain

Plan distance values of the other planners

1000 T ——————
[+ A]
[B0 7]
F al E X]
L o]
L ol |
g
r = 1
¥ Eﬁ@
P

100 F * %@% .
[x o]
[% n]
[¢]
LPEREL I]
L o¥ % .]
10 B

| OAKplan-Ons vs LPG-sol ~ +

OAKplan-Ons vs Downward-sol ~ x

OAKplan-Ons vs Metric-FF-sol *

. OAKplan-Ons vs SGIPLAN-IPCS-SOI o

1 I n n PR R n n n PR T n n n PR T
1 10 100

1000

Plan distance values of OAKplan-Ons in the Logistics domain

1000

Figure 72: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Ons and the other planners in the Logistics domain.

126

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
0

T T T 1 T
; #
1e+06 % P b
x T
o o
s k.
*
E
g
100000 [§ g
o
%
B 1
* ey
s 100 | B
10000 + 1 Ft
+§ b
fiari + x ¥
4% X
X 3
+
* +
1000 = B
M i
%D
+ O OAKplan-Onsvs LPG-sol ~ + OAKplan-Ons vs LPG-sol +
’%BDAKpIan-Ons vs Downward-sol OAKplan-Ons vs Downward-sol
+... OAKplan-Ons vs Metric-FF-sol ~ * OAKplan-Ons vs Metric-FF-sol ~ *
@) lan-Ons vs SGPLAN-IPC5-sol O OAKplan-Ons vs SGPLAN-IPC5-sol o
100 L St 1 L 1 10 L
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Ons (milliseconds) in the DriverLog domain Plan metric values of OAKplan-Ons in the DriverLog domain

Plan distance values of the other planners

1 L T T L | T T T 'i"'l T T EEZ
[+ + bt]
: 0O ooog O E B ED@D]%%DDE oo :

x O
L E + % % %* R L]

B T X %,
g | X
100 é Y?* Xy O g
- o R o R *%]
i BB g B3]
% X%XD < % al]
+
F X B XK + + 1
o] % % e +
L % X X §+ e +]
o ¥ S+
I e + ++ ++]
+
+

10} 1t 2 -
L ¥]

| OAKplan-Ons vs LPG-sol ~ +

OAKplan-Ons vs Downward-sol ~ x

; OAKplan-Ons vs Metric-FF-sol ~ *

g OAKplan-Ons vs SGIPLAN-IPCS-SOI O

1 It n n n T n n n i n n n i
1 10 100 1000

Plan distance values of OAKplan-Ons in the DriverLog domain

Figure 73: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Ons and the other planners in the DriverLog domain.

127

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
000

T T T
1e+06 |- B
"
+
100000 |- ~ B
o]
Lcza}
X
+ gt 9
&
. & 100 | g
10000 » R # %
]
¥ 2
X X
&
?é ®
%
1000 g A
OAKplan-Ons vs LPG-sol ~ + OAKplan-Ons vs LPG-sol +
OAKplan-Ons vs Downward-sol OAKplan-Ons vs Downward-sol
OAKplan-Ons vs Metric-FF-sol ~ * OAKplan-Ons vs Metric-FF-sol ~ *
) OAKp’an-Ons Vs SGPL‘AN-IPCS-soI q OAKpI§n»Ons vs SGPLAN-IPC5-sol a]
100 10
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Ons (milliseconds) in the ZenoTravel domain Plan metric values of OAKplan-Ons in the ZenoTravel domain

Plan distance values of the other planners

I + o+ + +
L N o |
L = i
+ g
100 " B
- = X 4
S]
L % ®]
I g]
F R

L §]
10 ¢ + @ b
r ¥]
[23 -} X =]
- = . 4

| 2 ® OAKplan-Ons vs LPG-sol ~ +

. OAKplan-Ons vs Downward-sol ~ x

; OAKplan-Ons vs Metric-FF-sol ~ *

g OAKplan-Ons vs SGIPLAN-IPCS-SOI O
1 It n n n T n n n i n n n i

1 10 100 1000
Plan distance values of OAKplan-Ons in the ZenoTravel domain

Figure 74: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Ons and the other planners in the ZenoTravel domain.

128

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
000

T T T
1e+06 |- B
100000 |- By B
5}
n
B
H bty 100 i
L
10000 |- FTEE §
1000 B
OAKplan-Ons vs LPG-sol ~ + OAKplan-Ons vs LPG-sol ~ +
OAKplan-Ons vs Metric-FF-sol ~ * OAKplan-Ons vs Metric-FF-sol ~ *
) OAKp’an-Ons Vs SGPL‘AN-IPCS-soI q OAKpI§n»Ons vs SGPLAN-IPC5-sol a]
100 10
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Ons (milliseconds) in the Rovers domain Plan metric values of OAKplan-Ons in the Rovers domain

Plan distance values of the other planners

L N
th =] i
100 B
10 B
I OAKplan-Ons vs LPG-sol ~ +]
OAKplan-Ons vs Metric-FF-sol ~ *
g OAKplan-Ons vs SGIPLAN-IPCS-SOI O
1 It n n n T n n n i n n n i
1 10 100 1000

Plan distance values of OAKplan-Ons in the Rovers domain

Figure 75: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Ons and the other planners in the Rovers domain.

129

CPU-time (milliseconds) of the other planners Plan metric values of the other planners
000

T T
1e+06 |- B
+
1
X
100000 |- B
100 B
10000 B
1000 B
OAKplan-Ons vs LPG-sol ~ + OAKplan-Ons vs LPG-sol +
OAKplan-Ons vs Downward-sol OAKplan-Ons vs Downward-sol
OAKplan-Ons vs Metric-FF-sol ~ * OAKplan-Ons vs Metric-FF-sol ~ *
) OAKp’an-Ons Vs SGPL‘AN-IPCS-soI q OAKpI§n-Ons vs SGPLAN-IPC5-sol a]
100 10
100 1000 10000 100000 1e+06 10 100 1000
CPU-time of OAKplan-Ons (milliseconds) in the TPP domain Plan metric values of OAKplan-Ons in the TPP domain

Plan distance values of the other planners

[E]
o X -
L § o |
i
X
100 % B
10 B
[%]
| OAKplan-Ons vs LPG-sol ~ +
OAKplan-Ons vs Downward-sol ~ x
OAKplan-Ons vs Metric-FF-sol *
g OAKplan-Ons vs SGIPLAN-IPCS-SOI O
1 It n n n T n n n n T n n n n T

1 10 100 1000
Plan distance values of OAKplan-Ons in the TPP domain

Figure 76: CPU time, plan qualities and number of different actions with respect to the target plans for
OAKplan-Ons and the other planners in the TPP domain.

130

Num Initial facts changed: 0

Num Initial facts changed: 1

Similarity values Similarity values
1r - ; 4 1F
ok ?
0.8 1 08¢
0.6 [1 06
04 1 04Ff
021 OAKplan-Nns ——— 1 921 OAKplan-Nns ——1
OAKplan-Nns-Kbase OAKplan-Nns-Kbase
0 OAKplan-Nns-Knode ‘ 0 OAKplan-Nns-Knode = ‘
0 1 2 3 0 1 2 3
Goal changes Goal changes
Num Initia facts changed: 2 Num Initial facts changed: 3
Similarity values Similarity values
1t ? 1 1r = B ? :
0.8 1 o8}
06 1 06
04 4 04}
021 OAKplan-Nns 1 %27 OAKplan-Nns
OAKplan-Nns-Kbase OAKplan-Nns-Kbase
o OAKplan-Nns-Knode ‘ 0 OAKplan-Nns-Knode = ‘
0 1 2 3 0 1 2 3
Goal changes Goal changes
Num Initial facts changed: 4 Num Initial facts changed: 5
Similarity values Similarity values
1r ;] 1r ? F ? ;
08 ? 1 08¢
0.6 - 1 06}
04 1 04Ff
02r OAKplan-Nns 1 927 OAKplan-Nns
OAKplan-Nns-Kbase OAKplan-Nns-Kbase
0 OAKplan-Nns-Knode ‘ 0 OAKplan-Nns-Knode = ‘

0 1 2 3
Goal changes

0 1 2 3
Goal changes

Figure 77: Box & Whiskers plots of the similarity values produced using Cpr, Kpase and K, 04e kernel
functions in the different benchmark planning problems considering different numbers of initial changes
(reported on the top of the figures) and different numbers of goal changes (reported on the z-axis of the
figures).

131

