Architettura del calcolatore: gerarchia delle memorie, coprocessori, bus (cenni)

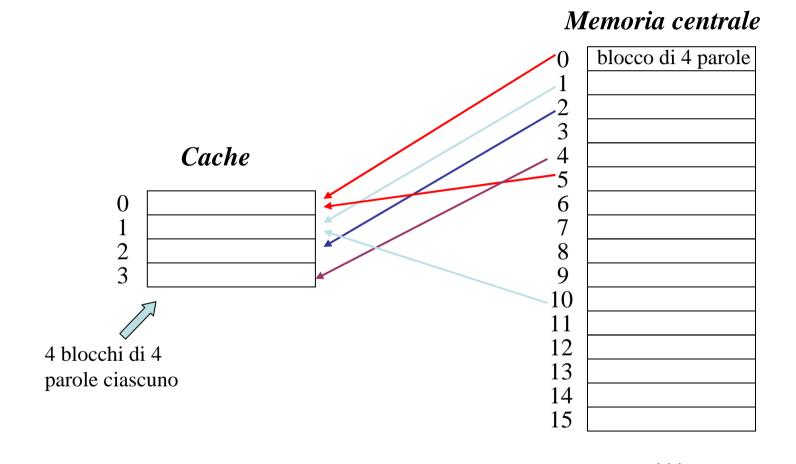
Percorso di Preparazione agli Studi di Ingegneria

Università degli Studi di Brescia

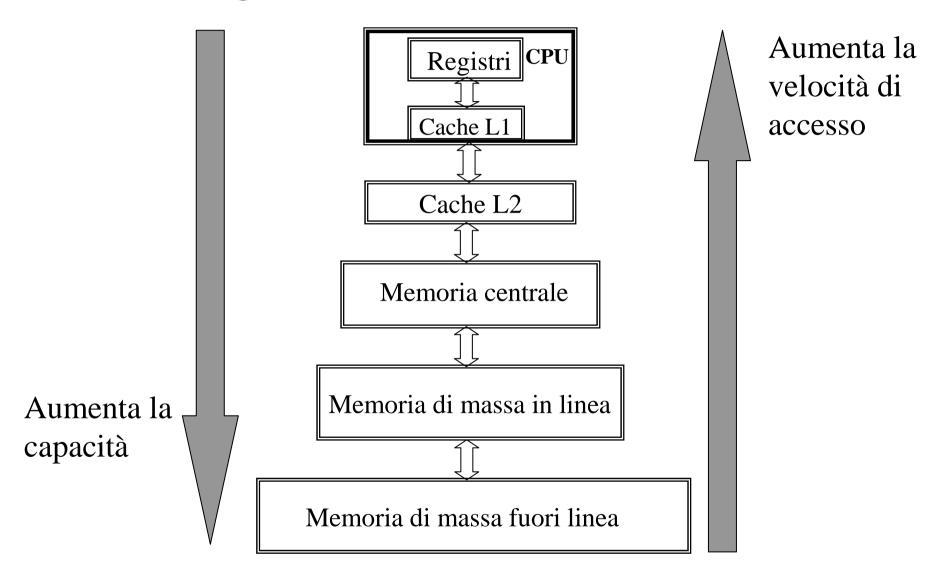
Docente: Massimiliano Giacomin

Migliorare le prestazioni della memoria

- Idealmente, la memoria dovrebbe essere di grande capacità, molto veloce e di costo ridotto, ma:
 - più velocità e capacità: maggiore il costo per bit
 - maggiore velocità richiede piccole dimensioni (addirittura, nello stesso circuito integrato CPU)
- Obiettivo: coniungare la presenza di una memoria piccola e veloce con altri dispositivi grandi e lenti, mantenendo i costi contenuti
- COME? Si sfrutta il principio di località


Principio di località

- Si è osservato che statisticamente un programma indirizza più del 90% delle sue richieste di lettura e/o scrittura a un'area di memoria contigua di dimensioni inferiori al 10% dell'area complessiva occupata dal programma e dai suoi dati
- Località spaziale: quando un programma fa riferimento a un elemento in memoria (istruzione o dato), è molto probabile che faccia riferimento entro breve tempo ad altri elementi il cui indirizzo è vicino a quello dell'elemento riferito
- Località temporale: quando un programma fa riferimento a un elemento in memoria (istruzione o dato), è molto probabile che faccia riferimento allo stesso elemento entro breve tempo


MEMORIA CACHE

- Memoria piccola e veloce (memoria elettronica di tipo statico)
- Contiene un sottoinsieme delle informazioni presenti in memoria centrale (memoria elettronica di tipo dinamico)
- E' organizzata in blocchi
- I blocchi vengono trasferiti tra memoria centrale e cache come unità indivisibili
- Quando la CPU emette un indirizzo di parola, il blocco che contiene la parola viene prima cercato nella cache, se è presente si accede alla parola all'interno del blocco, altrimenti si accede alla memoria principale e si trasporta il blocco in cache (eventualmente eliminandone uno dalla cache)
- Si usano tipicamente due livelli di cache: cache interna (primo livello) e cache esterna (secondo livello)

ESEMPIO: cache completamente associativa

La gerarchia di memoria

Caratteristiche dei livelli di gerarchia di memoria

Livello	Dimensioni indicative	Tempo di accesso
Registri	~ 1 Kbyte	~ 0.2 ns
Cache I livello	~ 32 Kbyte	~ 0.4 ns
Cache II livello	~ 2 Mbyte	< 2 ns
Cache III livello	~ 8 Mbyte	< 5 ns
Memoria centrale	~ 8 Gbyte	< 50 ns
Dischi	> 300 Gbyte	< 10 ms
Nastri	> 10 Gbyte	~100 ms

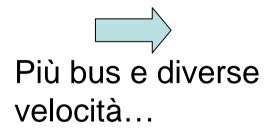
QUALI VANTAGGI?

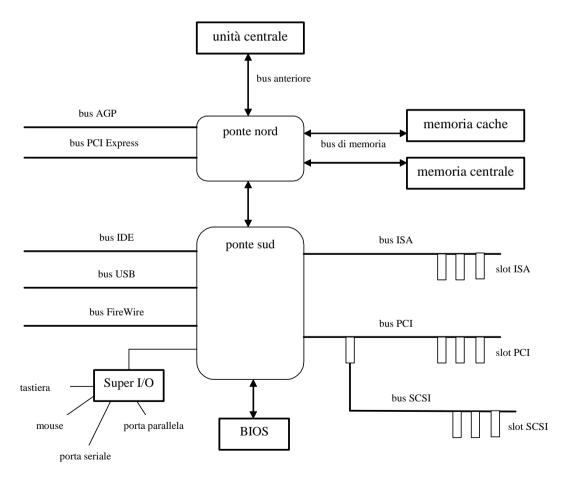
- L'utente (il programmatore) dispone di una quantità di memoria paragonabile a quella disponibile nella tecnologia più economica (memoria di massa – costituita da memorie magnetiche e ottiche)
- Allo stesso tempo la velocità di accesso è paragonabile a quella garantita dalla tecnologia più veloce (registri, cache - memorie elettroniche)
- Costi totali ridotti, prestazioni elevate

Migliorare le capacità di elaborazione

- Unità centrale unico dispositivo attivo comporta:
 - potenziale "collo di bottiglia"
 - mancato sfruttamento di specificità

Uso diversi "processori dedicati", controllati dall'unità centrale (utilizzo di interrupt)


- coprocessore grafico nella scheda grafica
- coprocessore audio nella scheda audio
- DMA più evoluti (es. conversione formato, ecc.)



Sistemi multiprocessore

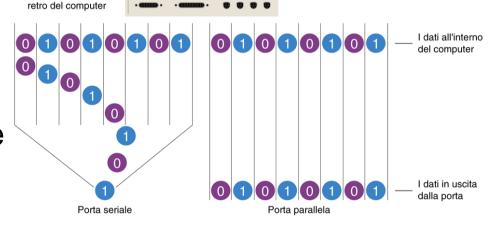
Migliorare l'efficienza del bus

- Unico bus e unico segnale di clock per tutto il sistema comporta:
 - bus è un "collo di bottiglia"
 - unità veloci devono adeguarsi alla velocità di quelli lenti

Il calcolatore a livello "fisico"

- Scheda madre: unica scheda che contiene:
 - alloggiamenti per la CPU, memoria centrale, cache
 - bus locali
 - connettori per bus esterni (porte)
 - schede di espansione
- Chipset: insieme dei dispositivi allocati sulla scheda madre che ne pilotano il funzionamento (comprendono i controllori di bus)
- Ogni periferica è controllata da un'interfaccia
 - realizzata tramite una scheda che viene inserita nel calcolatore e connessa direttamente al bus locale.
 Il collegamento fra un'interfaccia e una periferica avviene attraverso una porta predisposta sulla scheda e accessibile dall'esterno
 - Collegata ad un bus esterno (p.es. USB) sempre attraverso una porta

Esempio: scheda audio

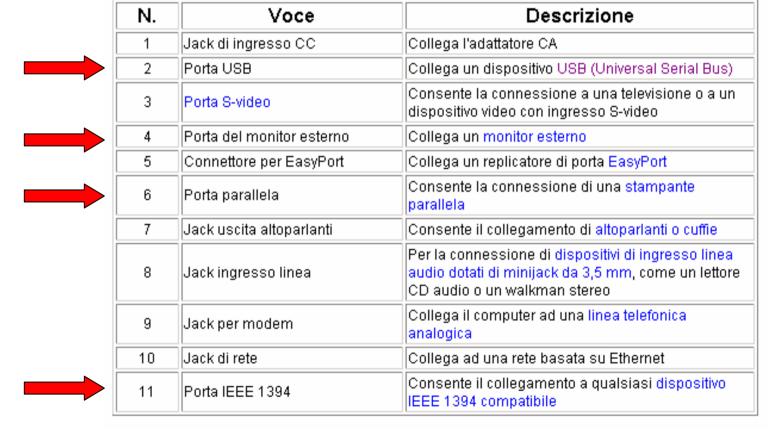

Permette comunicazione fra computer e altoparlanti

Trasmissione dati tra interfaccia e periferica

Le porte sul

- Modalità
 - Seriale (es. per mouse)
 - Parallelo (es. per stampante)
- Regole di standardizzazione per la comunicazione
 - RS-232C (seriale)
 - Centronics (parallela)

- Nuovi standard di connessione seriale (bus esterni)
 - USB (attualmente nella versione 2.0)
 - Firewire (IEEE 1394)
 - Standard Bluetooth (per collegamento seriale wireless es. telefonia mobile)



Porta USB

- connessione di numerosi dispositivi in serie
- plug & play
- "hot plugging"
- distribuiscono la corrente

Porta Firewire

