Informazione binaria: - rappresentazione di valori logici -

Percorso di Preparazione agli Studi di Ingegneria

Università degli Studi di Brescia

Docente: Massimiliano Giacomin

Tipologie di codici

Nel seguito vedremo tipologie di rappresentazioni diverse:

- Senza assumere limitazioni sul numero di bit a disposizione: per numeri [notazione binaria, ovvero posizionale con base 2]
- Disponendo di un numero di bit limitato:
 - numeri naturali
 - interi relativi [valore assoluto e segno, complemento a due]
 - "reali" [virgola fissa e virgola mobile]
 - valori logici, caratteri alfabetici, testi
 - suoni, immagini e sequenze video
 - codici per la rilevazione e correzione di errori
- Codici di compressione (senza | con perdita)

I problemi

• Talvolta è necessario rappresentare un fatto vero o falso

```
Un ipotetico esempio (in un linguaggio simile al C):
```

• I fatti possono essere composti a partire da altri fatti mediante congiunzione, disgiunzione, negazione, ...

```
"ho_l'automobile e ho_la_benzina"

"ho_l'automobile o ho_la_bicicletta"

"non ho l'automobile"
```

• Il loro "valore di verità" dipende da quello dei fatti elementari

I problemi (continua)

• Fatti espressi in forma diversa possono indicare in realtà il medesimo fatto

```
"Non (ho_l'automobile e ho_la_bicicletta)"

"(Non ho_l'automobile) o (Non ho_la_bicicletta)"
```

- Per risolvere questi problemi, dobbiamo introdurre alcuni concetti:
 - valore di verità
 - variabile booleana
 - operatori e formule booleane
 - algebra di Boole

Valore logico: esprime il "valore di verità" di un determinato fatto

Esempi

- Il voto del mio compito di informatica A è sufficiente (F1)
- Una squadra di pallavolo in campo è costituita da 6 giocatori (F2)

Il fatto F1 è *vero* oppure *falso*, non entrambi (lo stesso per F2)

Valore logico: esprime il "valore di verità" di un determinato fatto

Esempi

- Il voto del mio compito di informatica A è sufficiente (F1)
- Una squadra di pallavolo in campo è costituita da 6 giocatori (F2)

Il fatto F1 è *vero* oppure *falso*, non entrambi (lo stesso per F2)

NB: esistono fatti che possono essere non "completamente veri" nè "completamente falsi", ma noi <u>non ce ne occupiamo</u>

Es: Paperino è alto - Beckham è un giocatore da Milan

Problema

Dato un fatto, dobbiamo codificare i suoi possibili valori logici.

2 "oggetti" da rappresentare

V (vero) F (falso)

Problema

Dato un fatto, dobbiamo codificare i suoi possibili valori logici.

- 2 "oggetti" da rappresentare
 - V (vero) F (falso)
- E' quindi sufficiente 1 bit, ad esempio con la codifica:
 - falso: 0
 - vero: 1

Problema

Dato un fatto, dobbiamo codificare i suoi possibili valori logici.

- 2 "oggetti" da rappresentare V (vero) F (falso)
- E' quindi sufficiente 1 bit, ad esempio con la codifica:
 - falso: 0
 - vero: 1
- A volte sono disponibili più bit (ad esempio 8) e sono possibili diverse convenzioni, ad esempio nel linguaggio C si usa un intero (a 8 o più bit):
 - Falso: 0; Vero: qualsiasi valore diverso da 0

Variabile booleana

• Così come si usano variabili "numeriche" per memorizzare valori numerici (es. *temperatura_aria*) in modo simile si possono usare *variabili booleane* per memorizzare il valore di verità di un fatto

Esempio: uso una variabile F1 per il fatto che il compito sia suff. se (voto>=18) allora F1=V

Definizione

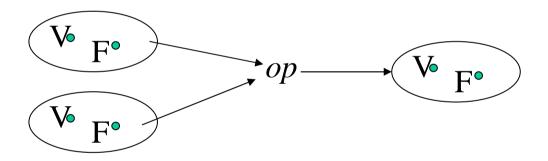
• Variabile booleana: *variabile binaria* che può assumere uno dei due valori logici denotati con 0 e 1 (oppure *Falso* e *Vero*)

 \longrightarrow DOMINIO: $\{0, 1\}$ (oppure: $\{F, V\}$)

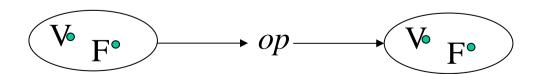
Operatori booleani

• Così come per le variabili numeriche esistono operatori aritmetici (es: +, -, *, ...), allo stesso modo per le variabili booleane esistono operatori booleani

OPERATORI BINARI (due argomenti)



OPERATORI UNARI (un argomento)



Operatori booleani più importanti

NOT Negazione Logica $\longrightarrow not(x), \overline{x}, \sim x$

AND Prodotto Logico $\longrightarrow x$ and y, $x \cdot y$, xy

OR Somma Logica x or y, x + y

Tabelle di verità (NB: 0 equivale a F, 1 equivale a T)

x	\overline{x}		
0	1		
1	0		
NOT			

x_1	x_{θ}	$x_1 \bullet x_0$
0	0	0
0	1	0
1	0	0
1	1	1

x_1	x_0	$x_1 + x_0$
0	0	0
0	1	1
1	0	1
1	1	1

AND

OR

Formule (o espressioni) booleane

Esempi:

$$x + y$$
 $((\overline{x+y})\cdot z)$

Definizione:

- 1. Le **costanti 0** e **1** e le **variabili** (simboli a cui possono essere associati i valori 0 e 1) sono formule booleane
- 2. Se E, E_1 ed E_2 sono formule booleane lo sono anche (E_1+E_2) , $(E_1\cdot E_2)$ e (\overline{E})
- 3. Non esistono altre formule oltre a quelle che possono essere generate da un numero finito di applicazioni delle regole 1 e 2

Equivalenza di formule booleane

Formule equivalenti: per ogni combinazione di valori delle variabili le formule restituiscono lo stesso valore

Un modo per verificare l'equivalenza: tabella di verità

ESEMPIO 1

 $\overline{\text{auto-bici}} = \overline{\text{auto+bici}}$

auto	bici	auto·bici	<mark>auto·bici</mark>	auto	bici	<mark>auto+bici</mark>
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	O	0	0	0

ESEMPIO 2

Assorbimento:

$$x(x+y) = x$$

x	y	<i>x</i> + <i>y</i>	x(x+y)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

15

NB: potevamo usare anche una diversa simbologia per i valori...

Assorbimento: x(x+y) = x

x	y	<i>x</i> + <i>y</i>	x(x+y)
F	F	F	F
F	V	V	F
V	F	V	V
V	V	V	V

16

...o per gli operatori

Assorbimento:
$$x \ AND (x \ OR \ y) = x$$

x	y	x OR y	x AND (x OR y)
F	F	F	F
F	V	V	F
V	F	V	V
V	V	V	V
1			<u> </u>

ESEMPIO 3

$$x_1 + x_2 + x_2x_3 + \overline{x}_2x_3 = x_1 + x_2 + x_3$$

x_3	x_2	x_1	$\overline{x_2}$	x_2x_3	\overline{x}_2x_3	$x_1 + x_2 + x_2 + x_3 + \overline{x_2} + x_3$	$x_1 + x_2 + x_3$
0	0	0	1	0	0	<mark>O</mark>	O
0	0	1	1	0	0	1	<mark>1</mark>
0	1	0	0	0	0	1	1
0	1	1	0	0	0	1	1
1	0	0	1	0	1	1	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	1	1
1	1	1	0	1	0	1	1

Algebra di Boole

• Algebra: insieme di supporto (i valori utilizzati) e l'insieme degli operatori fondamentali (devono essere <u>chiusi</u> rispetto all'insieme di supporto)

Es: (Z, {+, -}) è un'algebra, (N, {+, -}) non lo è

- Algebra di Boole: un particolare tipo di algebra che include:
 - un insieme di supporto A (l'insieme {0,1} o {V,F})
 - due operatori binari: AND (⋅) e OR (+)
 - un operatore unario: NOT (⁻)

[operatori soddisfano proprietà dedotte da un insieme di assiomi]

• E' lo **strumento matematico** su cui si fonda il funzionamento dei circuiti digitali

Assiomi dell'algebra di Boole

Forma AND Forma OR

Commutatività
$$AB = BA$$

$$A+B=B+A$$

Distributività
$$A+BC=(A+B)(A+C) A(B+C)=AB+AC$$

Identità
$$1A = A$$

$$0+A=A$$

Inverso
$$A\bar{A} = 0$$

$$A+\bar{A}=1$$

Proprietà dell'algebra di Boole

Elemento nullo	0A = 0	1 + A = 1
Idempotenza	AA = A	A+A=A
Assorbimento	A(A+B) = A	A+AB=A
Associatività	(AB)C=A(BC)	(A+B)+C=A+(B+C)
De Morgan	$\overline{A}\overline{B}=\overline{A}+\overline{B}$	$\overline{A+B} = \overline{A} \ \overline{B}$

Forma AND

Forma OR

Altre proprietà della negazione logica

- $\frac{1}{1} = 1$
- $\overline{0} = 0$

Equivalenza tra formule booleane via algebra di Boole

• ESEMPIO 1 precedente

• ESEMPIO 3 precedente

$$x_1 + x_2 + \overline{x_2}x_3 + x_2x_3 = x_1 + x_2 + x_3(x_2 + \overline{x_2})$$

= $x_1 + x_2 + x_3$

ALTRO ESEMPIO

$$x_1x_2 + x_1x_2x_3 + x_1x_2 = x_1x_2 + x_1x_2x_3$$

= $x_1x_2(1 + x_3) = x_1x_2$

ESERCIZI PROPOSTI

- Costruire le *tabelle di verità* delle seguenti formule booleane:
 - 1. $(x + y) + \overline{(xy)}$ che è equivalente a scrivere (x OR y) OR NOT(x AND y)
 - 2. ((x + z) + y) + (xz) che è equivalente a scrivere NOT ((x OR z) OR y) OR (x AND z)
- Usando gli assiomi e le proprietà dell'algebra di Boole dimostrare le seguenti equivalenze di formule booleane:
 - 1. $xyz + xy\overline{z} + xyz + x = x$
 - 2. $x\overline{y} + \overline{x}y + \overline{x} \overline{y} = \overline{x} + \overline{y}$