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Abstract

We present an extension of the planning framework based on
action graphs and local search to deal with PDDL2.1 tem-
poral problems requiring concurrency, while previously the
approach could only solve problems admitting a sequential
solution. The paper introduces a revised plan representation
supporting concurrency and some new search techniques us-
ing it, which are implemented in a new version of the LPG
planner. An experimental analysis indicates that the proposed
approach is suitable to temporal planning with requiring con-
currency and is competitive with state-of-the-art planners.

Introduction

Recent work on temporal planning, e.g., (Coles, et al. 2008;
2008b; Cushing, et al. 2007), has emphasized the practical
and theoretical importance of addressing problems where
action concurrency is necessary to find a valid plan, and
which cannot be solved by most of the current temporal
planners. In this paper, we present an extension of the tem-
poral planning framework based on action graphs and local
search (Gerevini, et al. 2003) to deal with PDDL2.1 prob-
lems requiring concurrency. Previously the approach could
only solve problems admitting a sequential solution (no nec-
essary action overlapping in the plan), because of a strong
assumption in the plan representation on the possible order-
ing of the start/end times of the durative actions in the plan.

In the proposed revised approach, each domain action a
is represented by a pair of instantaneous snap actions, dis-
tinguishing the start and end of a, which are denoted by
s(a) and e(a), respectively, and by appropriate temporal
constraints between the corresponding time points. The pre-
conditions of s(a) are the start and overall conditions of a,
while its effects are the start effects of a. The precondi-
tions of e(a) are the end conditions of a, while its effects are
the end effects of a.1 Essentially, a plan is represented by
an action graph modeling the causal/logical relations of the
snap actions and a set of temporal constraints between the
start/end times of the corresponding domain actions.

The paper introduces some new local search techniques
for the revised representation, which are implemented in a
new version of the LPG planner (Gerevini, et al. 2003). An
experimental analysis indicates that our approach is suitable
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1A similar compilation of the domain actions into snap actions
has been used in (Coles, et al. 2008; 2008b; Long & Fox 2003).

to temporal planning with problems requiring concurrency
and is competitive with state-of-the-art planners.

Temporal Action Graph with Concurrency

In this section, we give the necessary background and we in-
troduce a plan representation supporting action concurrency.
A temporal action graph (Gerevini, et al. 2003), abbrevi-
ated with TA-graph, for a planning problem is a directed
acyclic leveled graph alternating a fact level and an action
level. Like in Graphplan, fact levels contain fact nodes la-
beled by ground predicates, and each fact node f at a level
l is associated with a no-op action node at level l represent-
ing a dummy action having f as its only precondition and
effect. Each action level contains one action node labeled
by the name of the domain action that it represents, and the
no-op nodes corresponding to that level. The edges of the
graph directly connect each action node a at a level l with
the fact nodes at l representing the conditions of a (precon-
dition nodes) and with the fact nodes at level l+1 represent-
ing the positive effects of a (effect nodes). The initial and
final action levels contain the special nodes astart and aend

representing the problem initial state and goals, respectively.
A TA-graph A also contains a set CA of temporal con-

straints between the start/end of the actions in the (par-
tial) plan represented by the graph (Gerevini, et al. 2003;
2003b): (i) ordering constraints generated to deal with mu-
tually exclusive actions (if the domain actions labeling two
action nodes are mutex, they are ordered according to the
levels of their action nodes and the type of condition/effect
involved in the interference); (ii) ordering constraints im-
plied by the causal relations between the planned actions;
(iii) temporal constraints encoding the planned action dura-
tions. CA can be specified as a Simple Temporal Problem
(STP) (Dechter, et al. 1991), i.e., a set of constraints of form
y − x ≤ t, where y and x are point variables and t ∈ R.2

A solution of an STP is an assignment of values to its
point variables satisfying every constraint in the STP. An
STP C has a solution iff the distance graph of the STP,
indicated with D(C), does not contain a negative cycle
(Dechter, et al. 1991). Given an STP encoding CA, a solu-
tion where every variable (vertex of D(CA)) has the short-
est distance from the point variable for astart (with a “toler-

2Depending on the type of action condition and effect involved
in the causal/mutex relation generating an ordering constraint in
CA, the inequality can be strict or non-strict. Strict inequality in an
STP can be handled as shown in (Gerevini & Cristani 1997).
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Figure 1: An example of TA-graph A with snap actions (action graph on left and D(CA) on the right) supporting the required concurrency
of actions a1 and a2. For the action graph: square nodes are action nodes; circle nodes are fact nodes; dashed nodes are no-ops whose
propagation is blocked by mutex actions (abbreviated with “m.e.”); the numbers in round brackets are the action start times, with “(–)”
indicating an undefined time. For D(CA): circle nodes are point variables (action start/end times); an edge from x to y labeled t represents
constraint y − x ≤ t; the durations of a1 and a2 are 50 and 40, respectively.

ance” value for handling strict inequalities) can be computed
in O(n3) time for n variables in CA (Dechter, et al. 1991;
Gerevini & Cristani 1997). A possible schedule of the ac-
tions in the plan represented by A can be derived from this
solution, and defines the time values associated with the ac-
tion nodes of A.

In order to support problems with required concurrency,
we have revised the TA-graph using snap actions instead of
domain actions for labeling the action nodes. We call the
revised representation TA-graph with concurrency. Figure 1
shows an example of TA-graph with concurrencyA contain-
ing four snap actions generated from two planned actions a1

and a2 that must be executed concurrently, and the relative
distance graph D(CA). In the example and in the rest of the
paper, a− and a+ indicate the start and end times of a, re-
spectively. The duration d of an action a is encoded inCA by
constraints a+−a− ≤ d, a−−a+ ≤ −d. Each causal/mutex
relation involving a planned snap action s(a) (e(a)) gener-
ates an ordering constraint in CA involving a− (a+), with
the following exception needed to properly “protect” overall
conditions when dealing with interfering actions: if an ac-
tion node x at a level k interferes with an overall condition
of a snap action node s(a) at a level l < k (hence x and
s(a) are mutex), then the ordering constraint generated for
handling this interference involves a+ rather than a−.

For instance, suppose that in Figure 1 fact p3 is a start
effect of a1 and an overall condition of a2, and that ¬p3 is an
end effect of a1. Constraint a1− − a2− ≤ 0 ∈ CA because
s(a1) supports precondition node p3 of s(a2); a2+−a1+ ≤
0 ∈ CA because e(a1) interferes with condition overall p3

of s(a2).
A TA-graph with concurrency A may contain two types

of flaw: unsupported precondition ode (propositional flaw),
and maximum level snap action node involved in a negative
cycle of D(CA) (temporal flaw). This definition of tempo-
ral flaw is motivated by the following property (the proof
is omitted for lack of space): the minimum level temporal
flaw is an end snap action e(a) identifying the endtime of a
planned action a whose duration constraint cannot be sat-
isfied given the duration constraints of the actions that, ac-
cording to CA, must occur concurrently with a.

For example, in Figure 1 p4 at level 3 is a propositional
flaw; if the duration of a2 were 60, e(a1) would be a tem-
poral flaw, becauseD(CA) would contain the negative cycle
a1+ � a2+ � a2− � a1− � a1+. A TA-graph with no

flaw represents a valid plan.

Local Search for TA-graphs with Concurrency

Our approach is based on the local search procedure Walk-
plan (Gerevini, et al. 2003). Starting from an initial TA-
graph formed by only action nodes astart and aend, each
search step identifies the flaw σ at the minimum level, and
defines the elements of the search neighborhood of the cur-
rent TA-graph (search state) as a set of modified TA-graphs
where σ is repaired. A relaxed-plan based heuristic is used
to select an element from the neighborhood as the best can-
didate for the next search state. This choice is randomized
by a noise parameter helping to escape from possible local
minima.

In this section, we propose new definitions of search
neighborhood and an extended heuristic function for using
Walkplan in the context of TA-graphs with concurrency. The
basic search neighborhood N(A) of A for a propositional
flaw σ is obtained by adding/removing a pair of “twin” snap-
action nodes s(a) and e(a) (with the level of the first preced-
ing the level of the second) such that their addition/removal
would remove σ.3 The addition/removal of s(a) and e(a)
requires an update of CA for adding/removing the duration
constraints of a and the appropriate ordering constraints of
type (i)-(ii) involving a− and a+, which have been described
in the previous section.

In the following, xl denotes an action node x at level l of
the current TA-graph A, and lx the level of x. The search
neighborhood N(A) of A for a temporal flaw e(a)l is ob-
tained by the following possible graph changes and corre-
sponding updates of C(A):
(T1) removing e(a)l and its twin action node s(a)h (h < l),
(T2) removing a snap action node x associated with a point

variable on a negative cycle ω in D(CA) such that the
maximum level action node of ω is e(a)l (also the twin
snap action node of x is removed),

(T3) removing e(a) from level l and adding it to a level j,
with h < j < l, such that the STP formed by the temporal
constraints involving the action nodes at levels lower than
or equal to j in the resulting TA-graph is consistent.4

3When a pair of snap-action nodes is added, the graph is ex-
tended by two levels, and when a pair is removed, the graph is
“shrunk” by two levels. More details in (Gerevini, et al. 2003).

4Level j exists because e(a)l is the minimum level flaw of A.
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For instance, if e(a1)4 were a temporal flaw in the graph
of Figure 1, an example of T3 would be removing e(a1)4
and adding e(a1)2, since the STP involving only actions
s(a1)1 and e(a1)2 would be consistent (in the resulting TA-
graph, a2 would not be requested to be during a1 anymore).

The search neighborhood for a TA-graph with concur-
rency can be considerably larger that the neighborhood for
the original TA-graph, where each graph modification con-
sists of adding or removing only one action node (domain
action) instead of two snap action nodes. Table 1 gives em-
pirical evidence of this for some problems without required
concurrency, which can be solved by both representations.
The neighborhood of a TA-graph with snap actions is on
average two orders of magnitude larger than the neighbor-
hood of a TA-graph with domain actions. As a consequence,
the local search procedure with snap actions is significantly
slower.

In order to restrict the search neighborhood for TA-graphs
with concurrency, we propose an alternative definition for
handling propositional flaws, which constrains the possible
ways of adding snap actions and considers an additional type
of graph modification. The restricted search neighborhood
N(A) ofA for a propositional flaw σ at a level l is obtained
by the following possible graph changes and corresponding
updates of C(A):
(P1) adding two snap action nodes s(a)i and e(a)l+1 s.t.

i ≤ l and the addition of s(a)i removes σ,
(P2) adding two snap action nodes s(a)j−1 and e(a)j s.t.

1 < j ≤ l and the addition of e(a)j removes σ,
(P3) removing a snap action node x (and its twin snap action

node) s.t. the removal of x would remove σ,
(P4) removing a snap action node x from a level k < l

s.t. the removal of x would remove σ, and adding it to
level l + 1.
Remarkably, we have experimentally observed that the

size of the restricted neighborhood for snap-actions is simi-
lar to the size of the neighborhood for domain actions, and
LPG with the restricted neighborhood performs much better
than with the basic one defined above.

The elements in N(A) are evaluated using a heuristic
evaluation function E consisting of two weighted terms,
estimating the search cost and temporal cost for the ele-
ments in N(A), respectively. The temporal cost term is the
same as the one defined for TA-graphs with domain actions
(Gerevini, et al. 2003). In the rest of this section, we focus
only on the search cost term of E for TA-graphs with con-
currency, considering first the cost for adding a pair of snap
actions s(a) and e(a) (changes P1 and P2). For each added
snap action, the search cost is estimated by constructing a
temporal relaxed plan. The algorithm for constructing the
relaxed plan is similar to the one given in (Gerevini, et al.
2003). The overall search cost of adding a pair of snap ac-
tions is the sum of the number of actions forming the relative
relaxed plans.

For the addition of e(a) to A, we construct a relaxed plan
achieving three sets of facts (the first two of which are also
considered in the original heuristic function for TA-graphs
without concurrency): (1) the unsupported preconditions of
e(a); (2) the supported preconditions of other action nodes
inA that would become unsupported by adding e(a); and (3)

Probs N with snap-actions N with domain actions
μ max Time μ max Time

D-01 3.94 7 0.02 3.45 4 0.01
D-05 275.2 2947 0.37 10.90 45 0.02
D-10 457.0 70,073 131.5 19.10 108 0.02
D-15 48,045 492,964 – 71.47 1518 0.15
R-01 39.14 1010 0.07 10.63 33 0.01
R-05 405.7 23,708 2.53 23.23 80 0.02
R-10 1136 34,181 28.9 76.97 420 0.02
R-15 3296 75,026 63.4 86.43 959 0.03

Table 1: Average and max sizes of the basic search neighborhood,
and CPU times of LPG using TA-graphs with snap actions and with
domain actions for some problems in the “SimpleTime” version of
Driverlog (D) and Rovers (R). “–” means no solution within
1000 CPU secs.

Heuristic 10 20 30 40 50
ENoT 0.93 10.8 77.8 – –
ET 0.02 0.16 0.91 4.62 17.1

Table 2: CPU time of LPG using two heuristic functions for 5
problems in domain Match (10, 20, 30, 40, 50 matches). “–” in-
dicates no solution found with 1000 CPU secs.

the supported preconditions that would become unsupported
by removing the earliest action node becoming a temporal
flaw if e(a) were added toA. Intuitively, (3) is a simple way
to estimate the search cost for repairing the earliest temporal
flaw introduced into A by adding e(a) through T1.

The relaxed plan πs(a) for the search cost of adding s(a)
is derived similarly, with the exception that the relaxed plans
for s(a) and e(a) have different initial states: for s(a), the
initial state Is(a) is derived by applying the actions in A up
to level ls(a) − 1; for e(a), it is derived by applying to Is(a)

the actions in πs(a) (ignoring negative effects), then s(a),
and finally the actions in A from level ls(a) to le(a).

The search cost for removing a pair of snap action nodes
(changes T1, T2, P3), or moving an action node from a level
to another one (changes T3, P4) is computed similarly to the
cost for adding them, with the difference that the search cost
for removing an action node x is estimated by constructing a
relaxed plan for the precondition nodes supported by x that
would become unsupported by removing x.

Experimental Results

The techniques presented in the previous sections have
been implemented in a new version of the LPG planner,
which we tested using four domains with problems requir-
ing concurrency: the known domains Match, Matchlift
and DriverlogShift (Coles, et al. 2008) and a
new variant of Rovers Simpletime (RoversShift), ob-
tained by adding some ground actions from two new ac-
tion schemas, which require concurrency in every valid
plan. All test domains and problems are available from
http://lpg.ing.unibs.it/Concurrency/.

The results for LPG were obtained using the restricted
search neighborhood for propositional flaws, and correspond
to median values over five runs for each problem considered.
All tests were conducted on an Intel Xeon(tm) 2.6 GHz with
3 Gbytes of RAM.

Table 2 gives some results comparing the performance of
LPG with the heuristic introduced in the previous section
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Figure 2: CPU times and makespan of LPG.s, LPG.q, Crikey, Crikey3, TFD.s and TFD.q for DriverlogShift, Matchlift and
Rovershift. On the x-axis, we have the problem names simplifies by numbers. On the y-axis, we have CPU time (upper plots) or
makespan for the computed plans (bottom plots).

Score LPG.s LPG.q Crikey Crikey3 TFD.s TFD.q

Speed 70.8 42.3 9.4 0.5 3.2 3.0
Quality 53.9 72.2 30.0 32.7 22.7 24.2

Table 3: IPC-6 performance scores of the compared planners for
DriverlogShift, Match, Matchlift and Rovershift.
Higher scores correspond to better performance.

(ET ), which estimates the cost for repairing the temporal
flaws generated into the current TA-graph when adding snap
action nodes, and with a simpler heuristic that ignores these
temporal flaws (ENoT ). Although ET can be computation-
ally much more expensive than ENoT , these results indicate
that LPG with ET performs much better (it is about two or-
ders of magnitude faster). In terms of plan quality, we ob-
served similar performances with ET and ENoT .

Figure 2 compares the performance of LPG and three re-
cent prominent temporal planners supporting required con-
currency: Crikey (Coles, et al. 2008), Crikey3 (Coles, et al.
2008b) and Temporal Fast Downward (TFD) (Eyerich, et
al. 2009). LPG and TFD were tested in terms of CPU time
used to compute a solution, denoted by LPG.s and TFD.s,
and in terms of quality of the best plan computed using at
most 1000 CPU seconds, denoted by LPG.q and TFD.q.

From Figure 2 we can observe that: LPG.s solves
many more problems and is generally faster than Crikey
and Crikey3; for Matchlift, LPG.s is about one order
of magnitude faster than TFD.s (TFD does not run with
DriverlogShift and RoversShift); the plans computed
by LPG.q are generally better than those computed by all
the other compared planners, and often they are much bet-
ter. For Match, we observed similar performance gaps (the
plots for this domain are omitted for lack of space).

Table 3 gives results about the performance of the com-
pared planners using the IPC-6 performance score functions.
This analysis confirms that LPG.s/q performs better than the
other compared planners.

Finally, we have compared the new version of LPG with

Crikey and TFD also using the Simpletime versions of the
known domains Driverlog and Rovers which do not re-
quire concurrency. These results indicate that LPG is gener-
ally much faster and generates better quality plans w.r.t. the
compared planners.

Conclusions and Future Work
Handling required concurrency in temporal planning is prac-
tically and theoretically important. We have proposed an ex-
tension of a prominent approach to satisficing planning for
handling required concurrently in PDDL2.1 problems, and
experimentally demonstrated its effectiveness. Current and
future work includes the design of more powerful heuristic
techniques for dealing with temporal flaws, new techniques
for dynamically splitting the domain actions “when needed”
during search, and additional experiments.
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